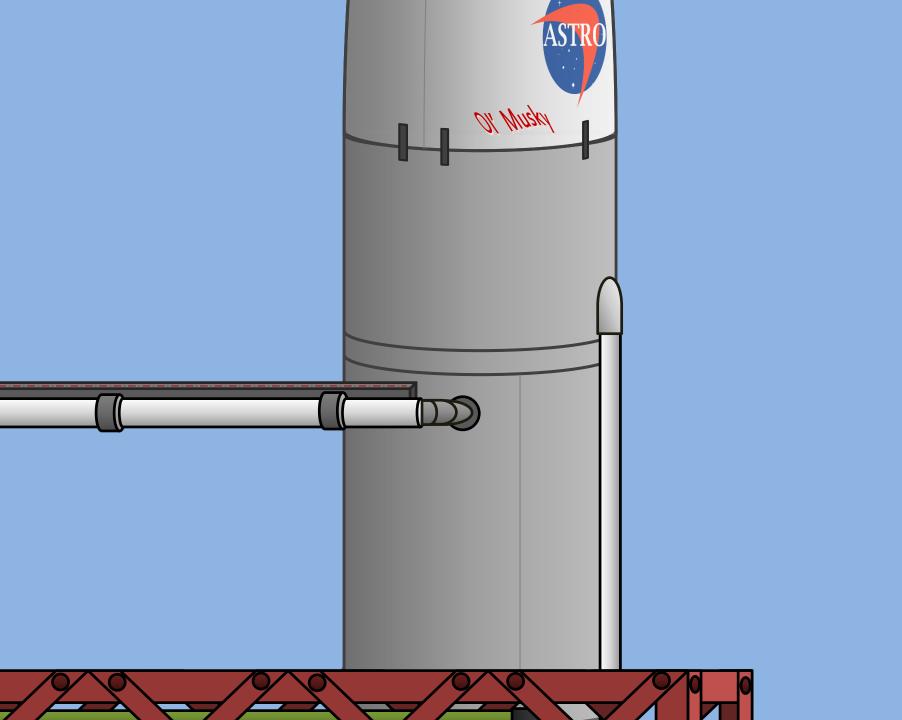
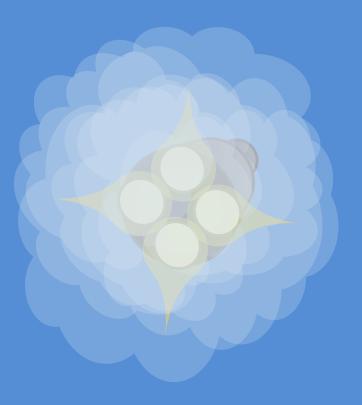
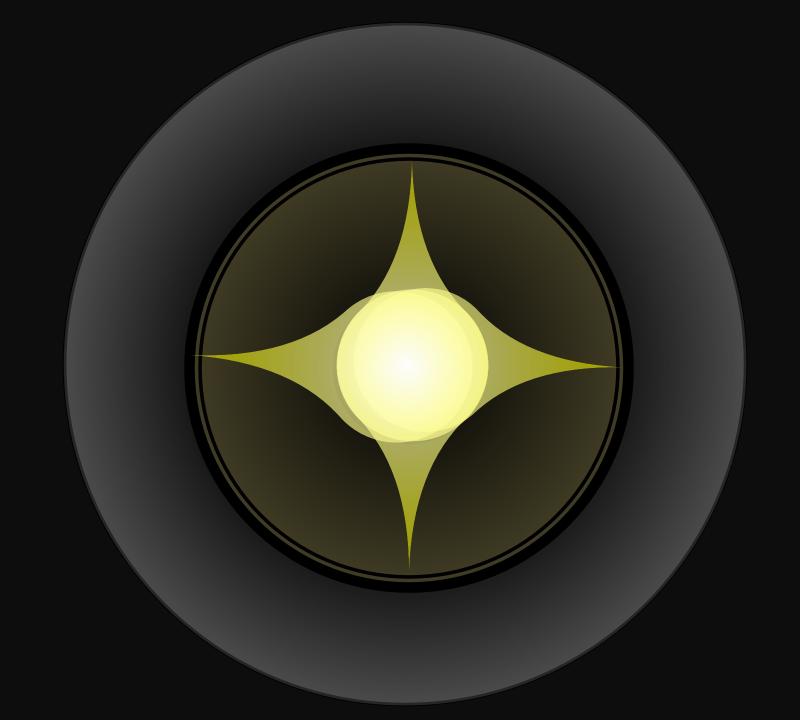
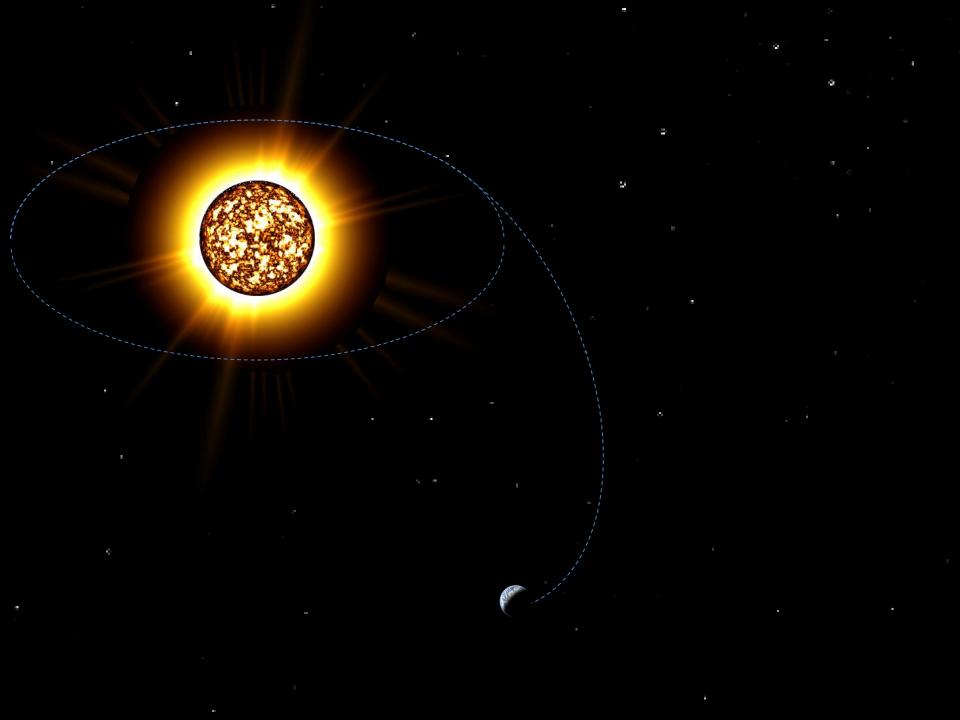


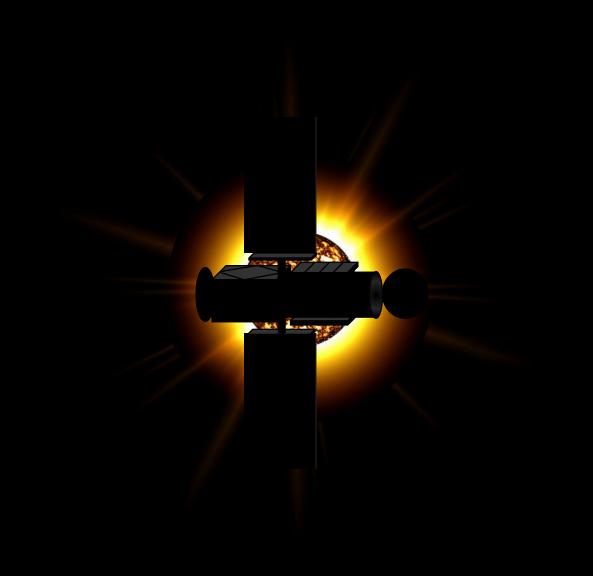
•


· ·




February 19 2018 Woomera Launch Area 5 T-minus 00:00:22





The John Tebbutt Space Telescope *or* "In space, no one can hear you scream"

Paul Pounds

19 February 2017 University of Queensland

METR4810

- What: Mechatronics team project course
- When: Starting now, going until week 13
- Where: Hawken 50-c404 (mostly)
- Who: Cast of thousands
- How: Lots of work
- Why: Get experience developing complex mechatronic and robotic systems... and *because it's awesome*

Specific class objectives

- Explore the trade-offs involved in complex mechatronic/robotic systems
- Gain experience in multi-variable analytical design synthesis
- Exercise practical cyber-electromechanical integration and trouble-shooting techniques
- Build interpersonal skills working in teams

19 February 2018

A quick note on objectives

Your objective: 7/7 grade My objective: 5/5 SECaT

Shared priorities:

- Meet course objectives
- Reduce unnecessary work
- Have fun!

What this class is

- Taking the safeties off
 - Real challenge, no hand-holding
- Unconstrained design, broad horizons
 Very few limitations or constraints
- Focus on communication, design process, teamwork

What this class is not

- Not about the project (not really)
 - It's about how you go about solving it
- Not teaching you technical engineering

 You already know how to do math, etc.
- Not giving you one single, clear path

 It's scary out there, and much is unknown

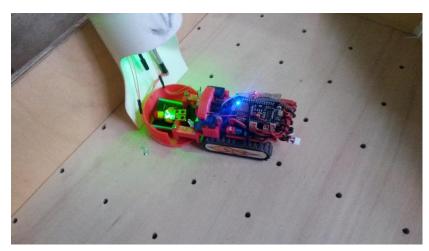
The Ghost of Projects Past

2013: Autonomous sailing and navigation

The Ghost of Projects Past

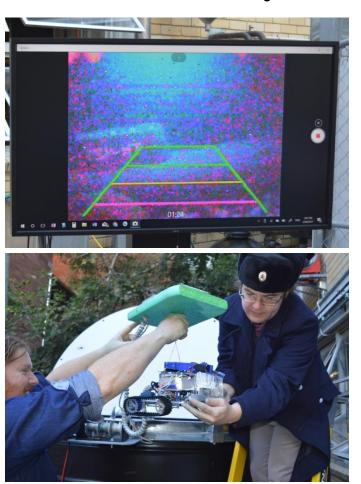
2014: Autonomous race car challenge

The Ghost of Projects Past

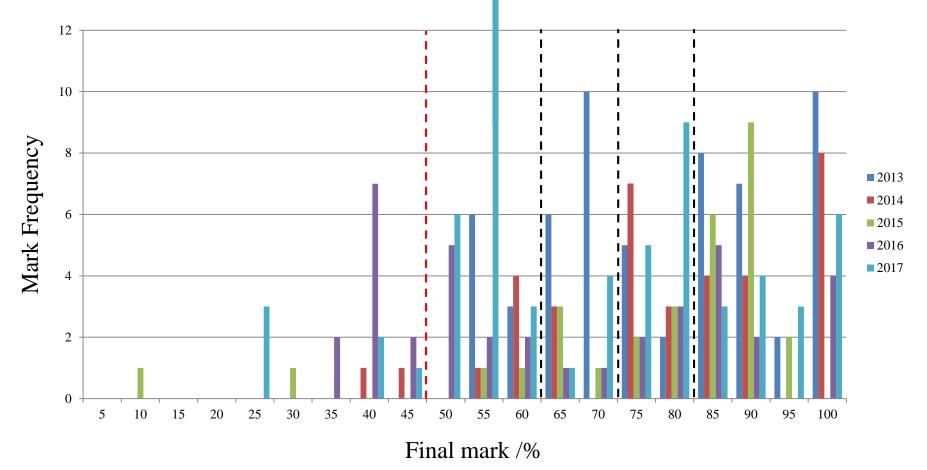

2015: Autonomous Carrier Operations

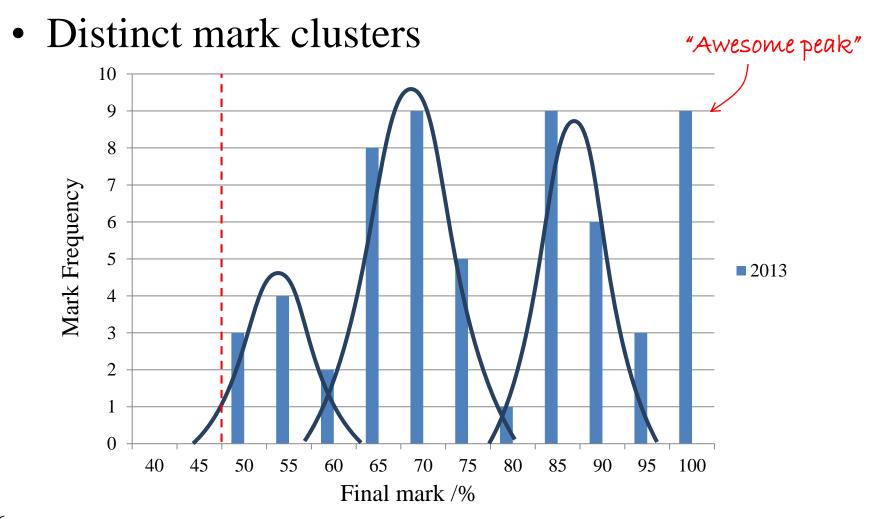
The Ghost of Projects Past

2016: Subterranean Mine Rescue



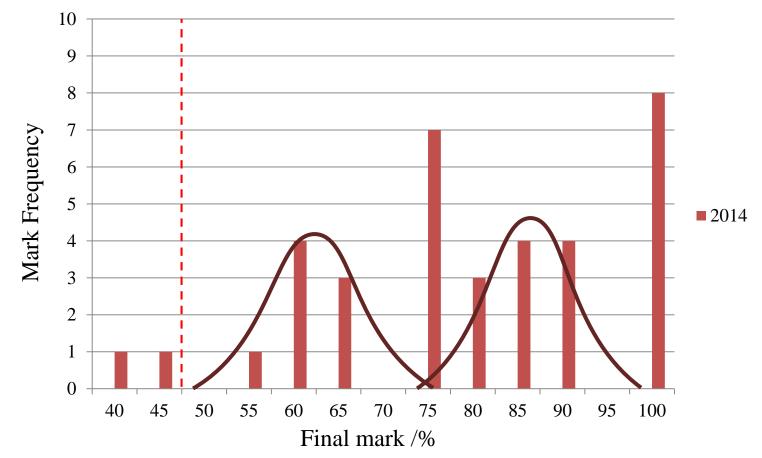
The Ghost of Projects Past


2017: Sunken Submarine Recovery

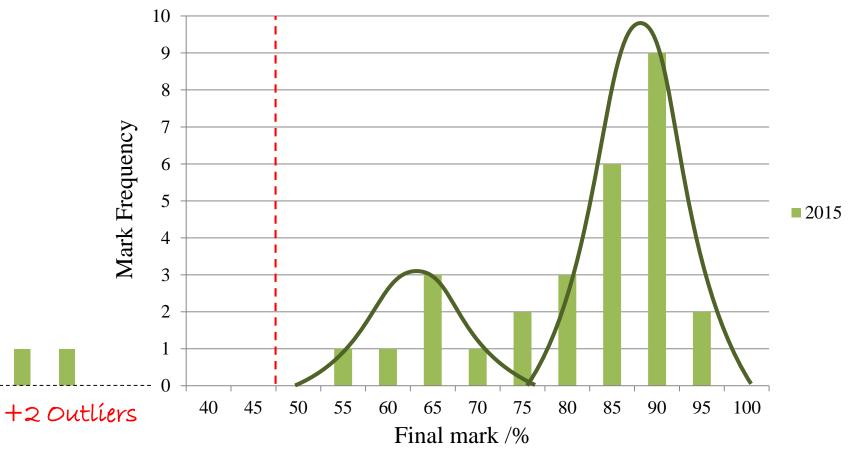


Assessment results

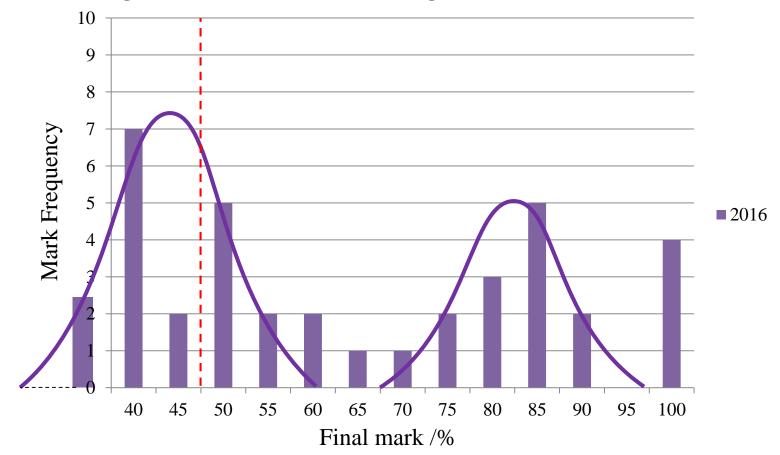
• Atypical mark spread: not a real bell curve



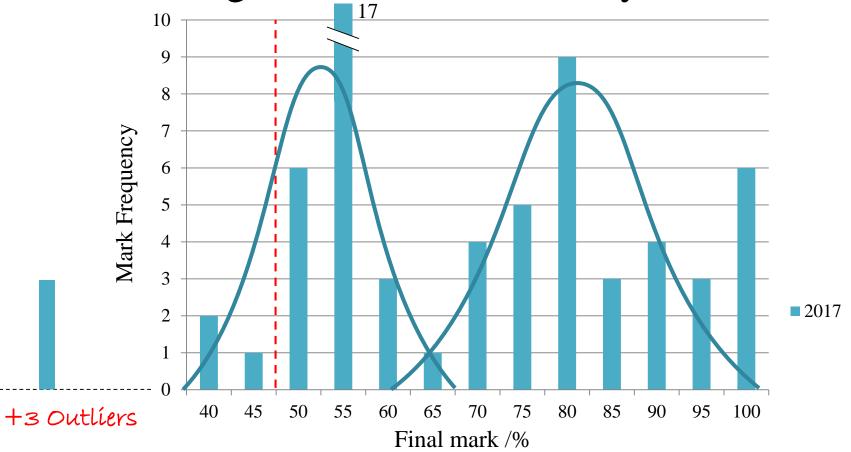
Assessment results


Assessment results

• Mark clusters move over time:


Assessment results

• Increasing performance, but more failures


Assessment results

• Strong successes but higher failure rate, still

Assessment results

• Marking criteria saved so many butts!

Assessment results

• Or, put another way:

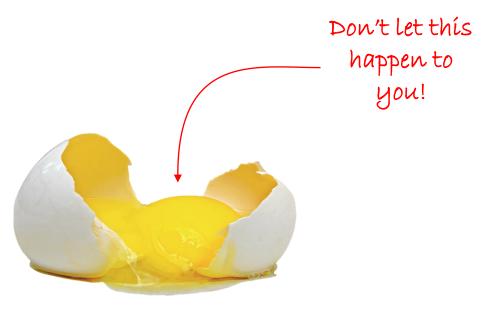
	Percentage of class					
	≤3	4	5	6	7	Avg
2013	0	25	24	19	32	5.58
2014	6	14	8	28	44	5.90
2015	7	16	10	30	37	5.66
2016	29	24	5	21	21	4.52
2017	18	31	13	18	19	4.94

Typical student outcomes

Student tend to fall into two broad groups: The **Gets-its** and the **Don't-Gets-its**

- The Gets-its work as a team, deconstruct the task rationally, try to understand the real problem, and implement a solution well
- The Don't-Gets-its... don't

Sins of the forebearers


- 2013: Mortal ability, immortal ambition.
- 2014: You cannot 3D print a passing grade
- 2015: Balsa, electrical tape, hot glue and paperclips *zero engineering analysis*.
- 2016: "Testing? What testing?"
- 2017: Assumed maximum hand-in volume limitation wouldn't be enforced it was.

Welcome back, frequent fliers

This course breaks eggs

 You are probably going to find this course technically or socially challenging (or both!)
 This is intentional

How to pass this course

- Work as a team
- Get started early
- Deconstruct the task logically
- Understand the *real* problem
- Implement a solution well

19 February 2018

How to fail this course

- Don't contribute to your team
- Do it all at the last minute
- Don't play nice with others
- Fixate on your pet approach
- Do lazy, effortless hacking

Paul Pounds

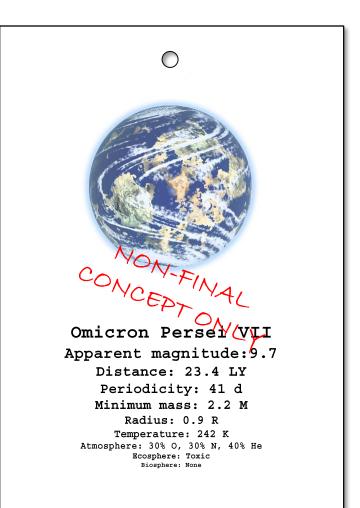
Enough about other people...

Now it's your turn

Paul Pounds

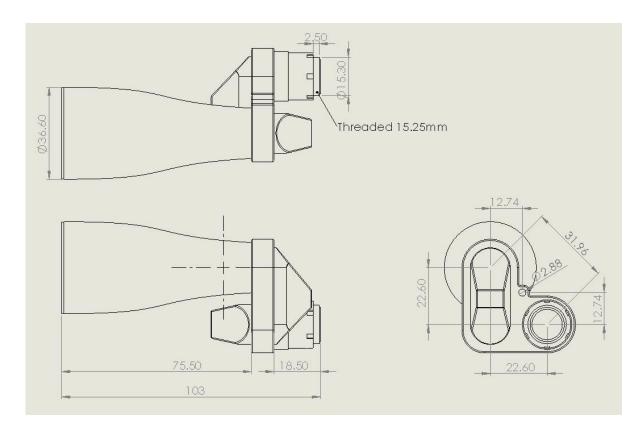
PART 1

The Project

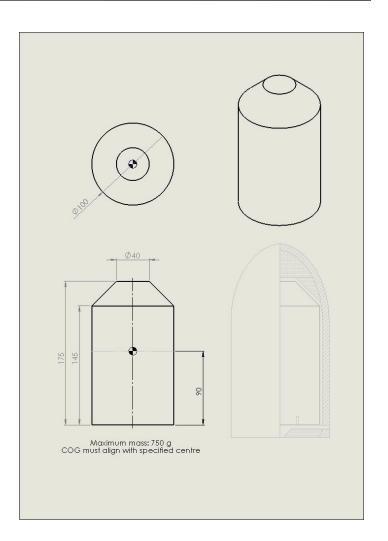

The task

Build a (miniature) space telescope and ground control station for imaging placards representing stars and exo-planets at the far end of the Hawken gallery and transmit the pictures to ground.

Paul Pounds


Apparatus

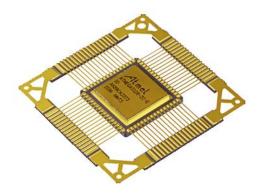
- Celestial targets consist of placard "eye charts".
 - Each contains a picture of a planet, plus data text.
 - Reading smaller font text data yields more marks.
 - Some targets have 'notable' features for bonus points.


Apparatus

- A stock "optics module" will be provided
 - You still have to provide an imaging sensor tho'

Apparatus

- The telescope must fit within *strict* payload size/weight limits
 - Pieces will be removed with side cutters until it fits within the limits.
- Must be self-contained
 No cables, wires, etc.


Paul Pounds

Zero-gravity vacuum environment

- The zero-g environment of the telescope will be simulated with a low-friction gimbal.
 - Large enough to accept the full payload volume.
 - Singularities (gimbal lock) above and below.
 - Multiple gimbals will be available for testing.
- No part of your satellite may depend on gravity or an atmosphere to function.
 - Ie. no accelerometers/propellers/pendulums/etc.

Space-rated microcontrollers

- The deep space environment requires a space-rated supervisory microcontroller
 - Doesn't have to be an *actual* rad-hardened micro; just show that it comes in a space-rated version
 - All key subsystems must be able to be powercycled by the space-rated microcontroller

Lead developers

- Each team member shall be 'lead developer' for one of the four key subsystems:
 - Mechanical and power management bus
 - Orientation control system
 - Telemetry and imaging
 - Ground control interface.
- The lead developer is responsible for monitoring (and ensuring) the progress of his or her subsystem

Other things

- No 3D printed parts in the satellite
- No Atmega 324/328 microprocessors
- Each subsystem must be demonstrable in isolation or using stubs

Full details on restrictions and constraints are in the task specification document

Key points

- Unlike previous years, you are not being asked to build something fully autonomous
 - Much like an open-book exam, the expectations will be correspondingly higher
- This task is intended to be *challenging*
 - Focus on getting readily achievable marks first
 - Don't underestimate the effects of variability
 - Consider limitations on testing availability

Scoring

- Performance will be measured with a point system for demonstrated functionality
- Points will be awarded during scheduled demonstration sessions in week 13
 - 30 minute total time for set up and test
 - Last 5 minutes reserved for pack-down/marking

See rules and description document for full details

Functionality and scoring

Basic Functionality	25/25 Points		
Satisfy the payload flight specification	5		
Demonstrate subsystem module power cycle sequence	10		
Return an image to the ground	10		
Maintain a constant orientation in space	10		
Return an image of a target planet	15		

Protíp: Passing the class pretty much requires you to be able to do this

Advanced Functionality	40/40 Points		
Target planet image returned	1 per target		
Target large text deciphered	2 per target		
Target medium text deciphered	3 per target		
Target small text deciphered	4 per target		

Bonus Functionality	10/10 Points	
Search board survey planet small text deciphered	1 point each	
Life detected	5 points	

The low energy solution

- There is often a simple, elegant low-energy solution to an engineering challenge
 - There is no 'right' way to solve any problem
 - Some people spend much energy on a complex solution, only to get frustrated when someone else finds a much simpler way
 - The simpler way is more correct; if you are struggling with your approach, maybe you need to rethink your assumptions?

Paul Pounds

PART 2

Assessment

My philosophy

- Engineering is the highest, purest and most noble pursuit of the human experience
 All else is artifice or drudgery
- You are training to be engineers, and this is a chance to actually practice engineering
- You are not your grade*
- There will be second chances

* They make me assign you a grade

What to expect

• Expect to learn new things on your own

You need will need to know *more* than just what you've been taught at university thus far

- Expect to apply real effort
 - This course **actively** punishes freeloaders
- Expect to be involved

– Lots of peer assessment; PAFs can be *vicious*

• Expect change

- The specifications will change (intentionally)

A common theme

- Present analysis to justify design decisions
 - Motor torque/power calculations
 - Chassis structural load simulations
 - Clearance and tolerance of components
 - Microcontroller control cycle overhead
 - Decision matrices... and such!

If you can't back up it up with numbers, you're really just **guessing**

Deliverables

- Problem analysis
- Progress Review 1
- Progress Seminar*
- Progress Review 2
- Preliminary Report
- Final Product Demo*
- Final Project Report

- 10%
- pass/fail[†]
- 10%
- pass/fail[†]
- pass/fail[†]
- -60%
- -20%
- * Team assessment with peer and tutor weightings† More on this later

Problem analysis

Due 2nd March–10% (2 pages max)

- Break down the design problem, determine its scope, requirements and constraints.
- Describe the key underlying engineering design challenges what makes this hard?
- Present a candidate solution, and explain how your approach addresses the problem.
 – Analysis is golden.

Progress Reviews 1 and 2

Due 12th – 16th March and 8th – 11th May

- Tutor-mediated meetings
- Demonstrate your progress in the preceding period with tangible **evidence** of your contributions eg. prototypes, code, etc
- Pass/fail mark based on quality of work and relative progress towards the goal

EXPECT NO MERCY.

Statement of roles

- At Progress Review 1, your team will be required to present a statement of lead developer roles signed by the whole team.
- You will be expected to account for your responsibilities at subsequent reviews
- *Remember:* You don't have to be the only monkey working on your system, and you should help others!

Progress Seminar

Due $10^{\text{th}} - 14^{\text{th}}$ April (team assessment) - 10%

- Provide a 10 minute seminar outlining progress towards developing a solution to the problem.
 - Focus on the progress, not the approach
 - Each student presents for roughly equal time
- Assessed by course coordinator and tutors

Preliminary Report

Due 18th May

- Describes the methodical analytical approach to solving your subtask, how it relates to the other subsystems within the project and the analytical process that was used in developing the solution.
- Show the formal, <u>disciplined</u>, <u>quantitative</u> engineering <u>process</u> followed, demonstrating the feasibility of the approach taken.

Final Product Demo

Due week 13 (team assessment) -60%

- The Main Event show your system works!
- Marks awarded for <u>functionality</u>, <u>achievements</u> and <u>build quality</u>.
- Hand in everything needed to make your system work, including documentation and printouts of design schematics.

Above all: Convince me you can *engineer*.

Final Report

Due 1^{st} June – 20 %

- Identical to the preliminary report, but incorporating corrections and reflecting any changes from the final two weeks.
- Preliminary report will be returned with comments so that you have an opportunity to revise your work and improve upon it,

Just like in real life!

Incremental demos

- Spontaneous night-before failure of hardware systems is brutal and unfair*. *Just like real life!*
- If your system is sort-of working early, you can have it tested in an incremental demo.
 - If the final demo mark is less than what was scored in an incremental demo, you will be awarded the incremental demo mark.

Incremental demos

- Scored just like the final demo, but the mark is capped according to time left in semester
 - Week 7: 25%
 - Week 9: 50%
 - Week 11: 75%
- Incremental demos are by appointment only*
 * Do not attempt a demo with an obviously non-functional system or you may forfeit future incremental demo privileges

Pass/fail penalties

- Subpar (or absent) pass/fail submissions incur a <u>deduction</u> from your final grade
 - Project reviews: 5% each
 - Preliminary report: 10%
- These deductions are *cumulative*

If you were to fail all of them, your maximum achievable grade for the course would be 80%

PAF and TAF

- A substantial fraction of assessment is peermoderated; others are tutor-moderated
 – Regularly adjusts results by up to 2 grades
- It's vital your team recognises your efforts
 A bitter or frustrated team means a low PAF!
- Ultimately, peer and tutor weighting is mediated by the course coordinator

Peer assessment

- At progress reviews, progress seminar and final demo, you will fill out PAFs
- Your demo mark will be scaled by all of the PAFs, according to a weighting scheme:
 - Progress review 1: 10%
 - Progress seminar: 20%
 - Progress review 2: 30%
 - Final demo: 40%

Calendar at a glance

You are	Week	Dates	Lecture	Reviews	Demos	Assessment submissions	
You are here 🤄	1	19/2 - 24/2	Introduction			Γ,	
here 🦈	2	26/2 - 2/3	Principles of Mechatronic	4	+	Problem analysis	
À	4	20/2 - 2/3	Systems design			Problem analysis	
	3	5/3 - 9/3	Professional Engineering	+	+		
Teams			Topics			!	
assígned here	4	12/3 - 16/3	PCB design tips	Progress review 1			
here	5	19/3 - 23/3	Your soldering is (probably) terrible				
	6	26/3 - 29/3	Introduction to firmware design				
	Break	30/4 - 13/4				K	Hyooooge
	7	16/4 - 20/4	Swítch to	Progress seminar	25% demo	<u> </u>	break!
	8	23/4 - 27/4	Qand A				Hyooooge break! Try to work
	9	30/4 - 4/5	sessíons		50% demo	<u> </u>	C
	10	8/5 - 11/5	No lecture	Progress review			
	11	14/5 - 18/5			75% demo	Preliminary report	Madiness
	12	21/5 - 25/5				K	Madness week
	13	28/5 - 1/6	Closing lecture		Final testing	Final report and reflection	

Paul Pounds

PART 3

Class Organisation

Heads up

- I had intense surgery at the end of November
 - They opened me up, pulled out my insides, shuffled them around, and put them back in.
 - Bonus: They let me keep the bits they took out!
- This course was designed while in hospital, under the influence of *serious* painkillers.
- If anything in the course doesn't make sense, it's probably due to that just let me know!

Blackboard and splashy website

- This class has a Blackboard page and a "splashy" outwards-facing website
 - If the two ever differ (which they won't), the Blackboard page is considered authoritative

Blackboard: learn.uq.edu.au/ Splashy: robotics.itee.uq.edu.au/~metr4810/

Weekly schedule

• Lectures – 2 hours once per week

Professional topics and Q&A sessions

- Practicals 2 hours twice once per week
 Tutors available in lab (but 24/7 access)
- "Contact" 2 hours twice thrice per week
 Time set aside for meetings, demos, etc.

Your team should meet and interact continuously outside of class – *at least* once per week

Weekly schedule

- I asked for two practical sessions spread across two rooms and I got two sessions each in one room... at the same time.
 - I was too high on morphine to notice the problem when the draft was published*
- We'll fix it by making the Wednesday contact slot a practical session instead.

*From the surgery, I promise!

Class clashes

I am aware of some clashes with other classes

- Most notably METR4900

 This will ruin your life plan accordingly
- Any others I've missed?

All lecture content will be online Major announcements go out via Blackboard ... but you'll hear it first in class, by design

Lectures

• Boring, useless lectures help *nobody*

• I will endeavour to provide lectures that are educational, useful and (sort of) entertaining

• Lectures will be student-driven: you tell me what you want to learn about and I'll teach it

Lectures

- Lecture 1: Introduction to the project
- Lecture 2: Principles of mechatronics system design
- Lecture 3: Professional engineering topics
- Lecture 4: PCB design tips
- Lecture 5: Your soldering is terrible (probably)
- Lecture 6: Introduction to firmware design

Topics may be nominated by emailing me, and then voted for on a doodle poll

Lectures

- No, you don't *have* to attend lectures, but if you don't you're really missing out
 - Protip: Students who attend lectures historically do better than those who don't!
- Lectures are the first and most immediate way of hearing about what's happening and getting your questions answered

- Note: recordings aren't interactive

Some suggested topics

- Principles of teleoperation control
- Orientation control on SO(3)
- Digital control
- Electromechanical devices
- Computer vision
- Sensor-fusion and filtering
- Localisation
- Schopenhauer and philosophical pessimism

Teams

- Teams will each consist of four people
 Except for when they don't
- Teams will each be assigned a tool kit
 Complete kit must be returned *or else*

• Work together! Contact sessions are set aside for team meetings and collaboration

Teams

- You will have to work with people you hate* Just like in real life!
- You may email me and request one person with whom you do not want to work

– Exclusion requests must be in by Friday

Otherwise, teams will be allocated by magic
 Teams will be assigned in week 2

*If you don't hate them now, you will by the time you're done

• A reasonable number of students this year?

– I'm as surprised as you are...

- Consequence: hopefully less space pressure
 - New (smaller) lockers for project work
 - Shared space and resources
 - Get started early; consider how you can work most effectively in the final two crunch weeks

Paul Pounds

Hey, about that lab ...

- The laboratories are governed by the UQ risk management policy
- To work in the lab:
 - You **MUST** have completed the induction
 - You **MUST** have read the lab risk assessment
 - You MUST wear appropriate footwear
 - You **MUST** abide by all safety requirements
- If you do not follow the guidelines you will be barred from the lab

- Just in case you forgot:
 - No eating/drinking in the lab
 - No sleeping in the lab
 - No non-METR4810 students in the lab
 - The lab is not for facebook/tindr/grindr/gaming/ socialising/having a life etc.
 - <u>I am held personally responsible for the safety</u> and condition of the lab and I get *very* grumpy.

So don't say you weren't told.

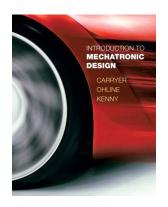
- Every year, I go out of my way to find people violators to make an example of
 - Don't let this happen to you!

Proposed lab management polícy

- Keep the lab clean and orderly
- Cleanliness "warning light" system in effect
 - Status noted on Blackboard/class website

Green: Full speed ahead Yellow: Clean up needed Red: Danger, Will Robinson!* Black: "Uh oh."**

*Lab will go to limited hours until cleaned. **Lab will be locked until further notice.


Paul Pounds

</eyeofsauron>

Keeping the lab tidy makes for a nicer place to work and makes it easier to get stuff done

Resources

- Website
 - Everything will be posted on the Blackboard class website: (learn.uq.edu.au)
 - Better-looking class website will mirror course materials: (robotics.itee.uq.edu.au/~metr4810)
- Textbook
 - "Introduction to Mechatronic Design"
 by Carryer, Ohline and Kenny

(recommended but not required)

Knowledgeable people

- Course Coordinator and Chief Conspirator:
 – Paul Pounds
- Technical Staff
 - Peter Bleakley
 - Ray White
 - Grant Tayles

- Tutors:
 - Iain Rudge

- Emergency Auxiliary Temporary Back-Up Replacement Stand-in Teaching Faculty
 - Dr. Michael Kearny
 - Prof. Stephen Wilson

Contact info

If anything is bothering you, bring it up *early*

- Rules questions
 Assessments
- Technical issues

• Group problems

• Ordering

- Enrolment
- Disenfranchisment with the sociopolitical gestalt

Serious? Email first to arrange a meeting
No? Just stop on by! (but email is good too)

On that topic...

- I often get comments in the SECaTs about things that *could* have been addressed during the semester if I'd been told about it earlier
- Don't wait until you're angry in week 13
 - Tell me about it as soon as it comes up so I can explain it/solve it/fix it/find it/sort it right away
- I'm always happy to help! ③

Contact info

- Who: Me!
- Why: Questions, issues, concerns, ennui!
- Where: GPS 78-529 or Wordsmiths
- When: 10ish to 4ish by appointment (or drop in)
- What: Coffee or coke (either kind)
- How: paul.pounds@uq.edu.au

What happens next?

- Send me group exclusion requests
 - Email me ASAP!
 - Groups will be posted next week
- Attend the afternoon practical session in Hawken c404 Thursday 8th March
 - Toolbox handouts
 - Room induction, 3D printer induction

And start thinking about solutions!

Paul Pounds

19 February 2018

Tune-in next time for...

Principles of Mechatronic Systems Design

or

"Striking a Balance is Making Everybody Equally Unhappy"

Fun fact: John Tebbutt was one of Australia's first and most famous astronomers. He built his telescopes himself, by hand.

Paul Pounds

Questions?

96