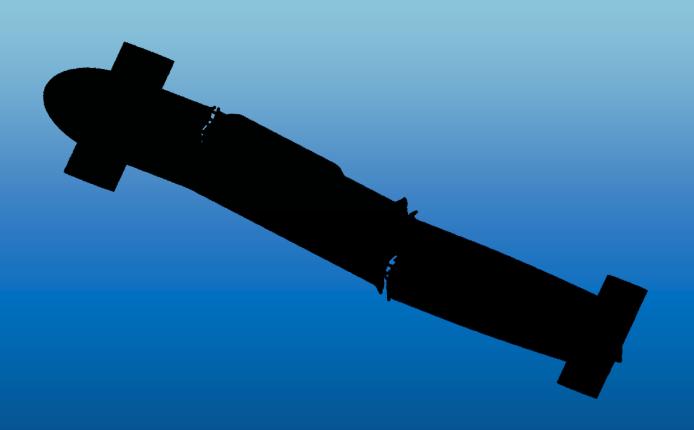
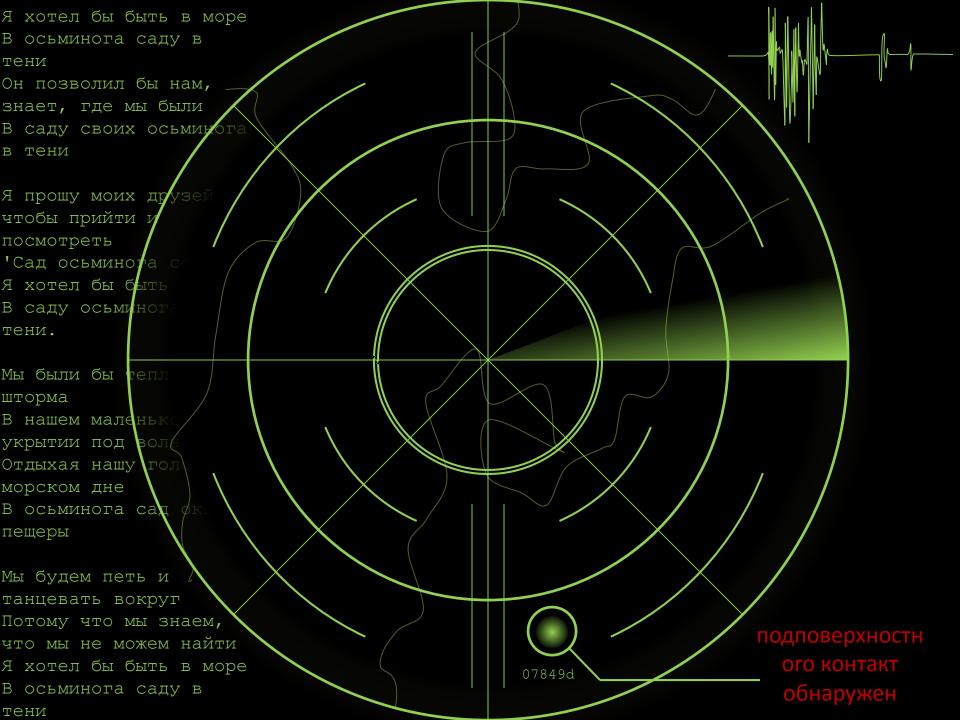
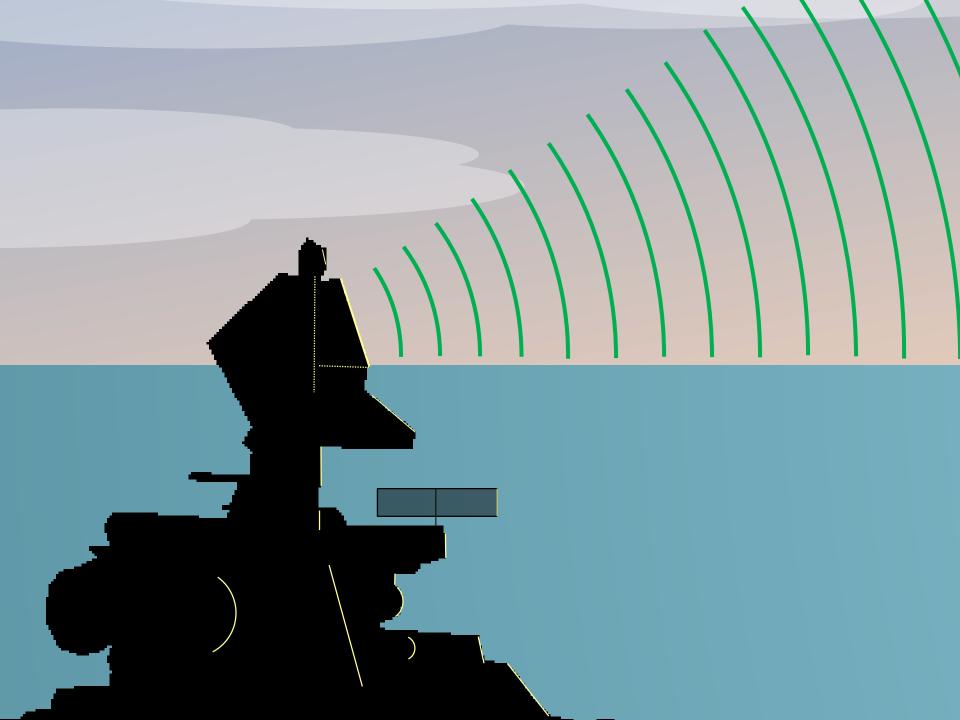
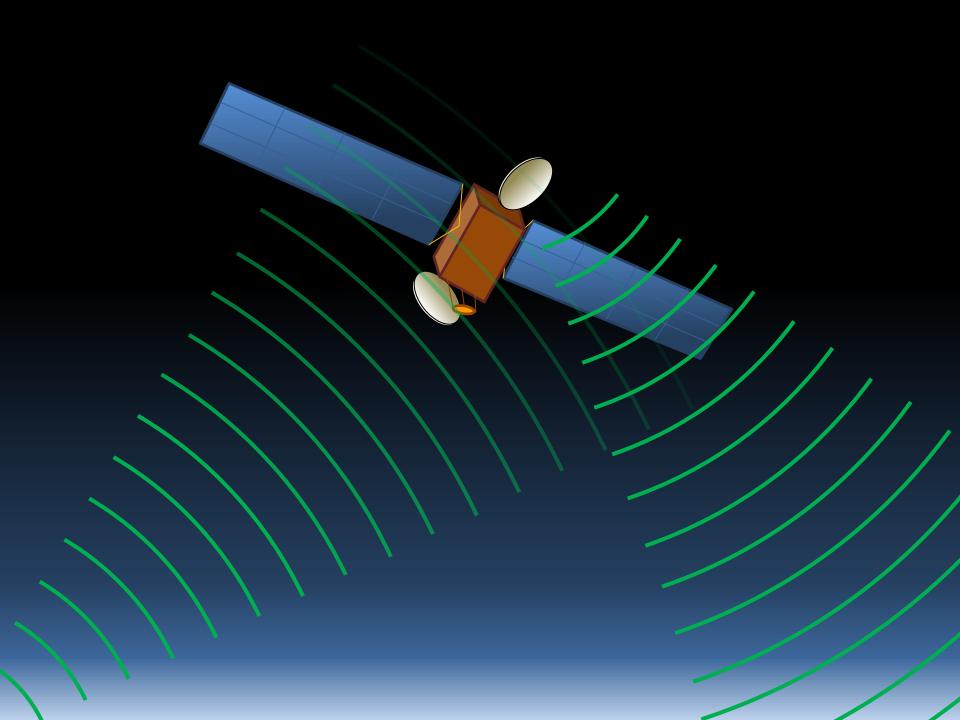

ОХОПА HΆ C₃P НИЛЬС ОЛАВ


February 28 1977
Makaroff Deep
660 km North East of St. Lucia







The hunt for Sir Nils Olav... begins

МЕТРЧ810 МЕХАТРОНИКА ПРОЕКТ КОМАНДА ІІ

Пол Фунты 28 февраль 2017

METR4810 MECHATRONICS TEAM PROJECT 2

Paul Pounds 28 February 2017

THE HUNT FOR SIR NILS DLAV

or "One Ping Only"

Paul Pounds

28 February 2017 University of Queensland

METR4810

- What: Mechatronics team project course
- When: Starting now, going until week 13
- Where: Hawken 50-c404 (mostly)
- Who: Cast of thousands
- **How**: Lots of work
- Why: Get experience developing complex mechatronic and robotic systems... and

because it's awesome

Specific class objectives

- Explore the trade-offs involved in complex mechatronic/robotic systems
- Gain experience in multi-variable analytical design synthesis
- Exercise practical cyber-electromechanical integration and trouble-shooting techniques
- Build interpersonal skills working in teams

A quick note on objectives

Your objective: 7/7 grade

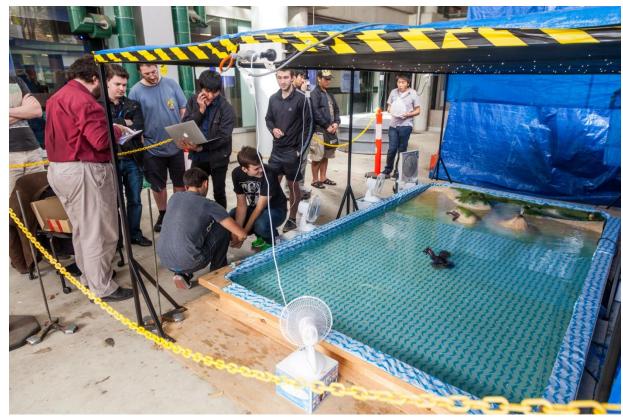
My objective: 5/5 SECaT

Shared priorities:

- Meet course objectives
- Reduce unnecessary work
- Have fun!

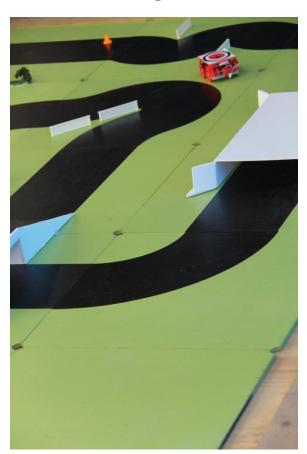
What this class is

- Taking the safeties off
 - Real challenge, no hand-holding
- Unconstrained design, broad horizons
 - Very few limitations or constraints
- Focus on communication, design process, teamwork


What this class is not

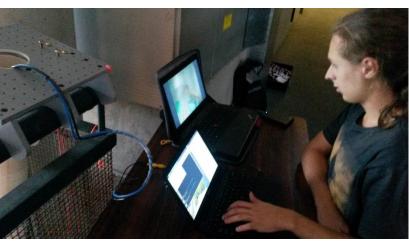
- Not about the project (not really)
 - It's about how you go about solving it
- Not teaching you technical engineering
 - You already know how to do math, etc.
- Not giving you one single, clear path
 - It's scary out there, and much is unknown

2013: Autonomous sailing and navigation

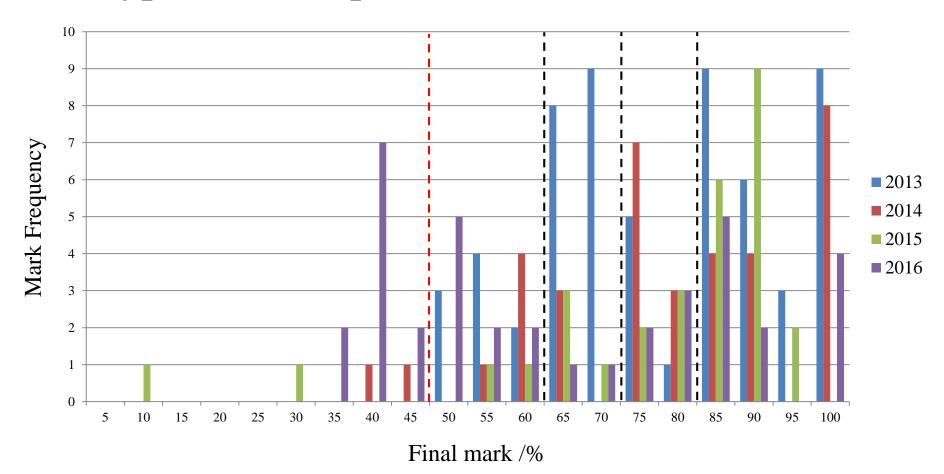


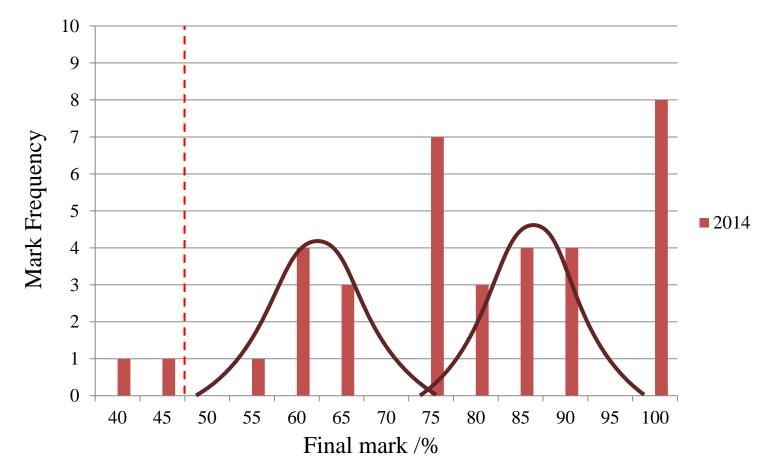
2014: Autonomous race car challenge

2015: Autonomous Carrier Operations

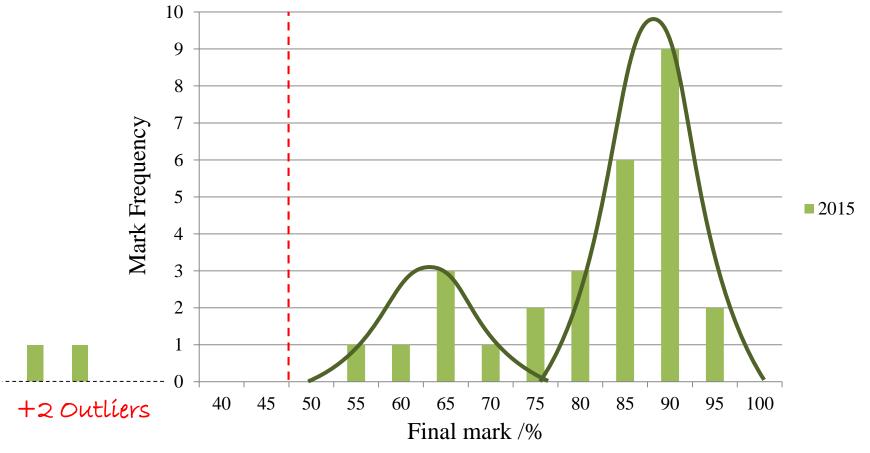


2016: Subterranean Mine Rescue

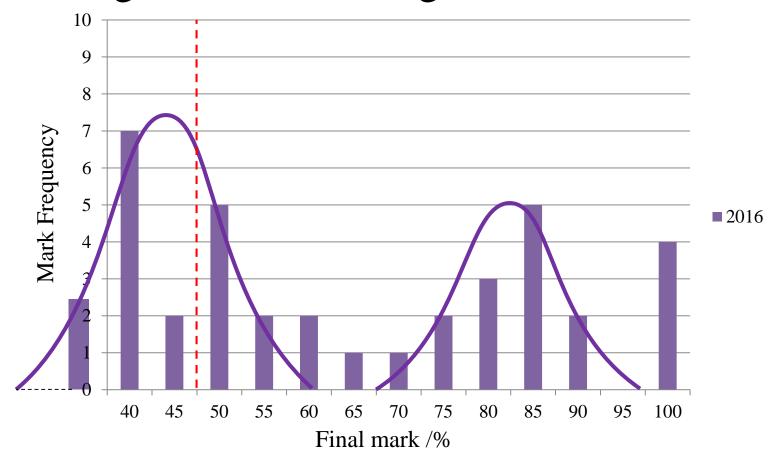




Atypical mark spread: not a real bell curve



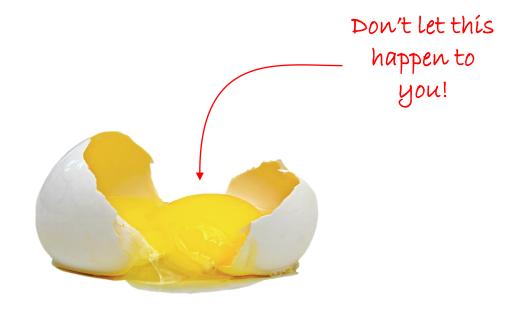
 Distinct mark clusters "Awesome peak" Mark Frequency Final mark /%


• Mark clusters move over time:

• Increasing performance, but more failures


• Strong successes but higher failure rate, still

• Or, put another way:


	Percentage of class					
	≤3	4	5	6	7	Avg
2011	0	19	26	22	33	5.69
2013	0	25	24	19	32	5.58
2014	6	14	8	28	44	5.90
2015	7	16	10	30	37	5.66
2016	29	24	5	21	21	4.52

Welcome back, frequent fliers

This course breaks eggs

- You are probably going to find this course technically or socially challenging (or both!)
 - This is intentional

Typical student outcomes

Student tend to fall into two broad groups: The **Gets-its** and the **Don't-Gets-its**

- The Gets-its work as a team, deconstruct the task rationally, try to understand the real problem, and implement a solution well
- The Don't-Gets-its... don't

How to pass this course

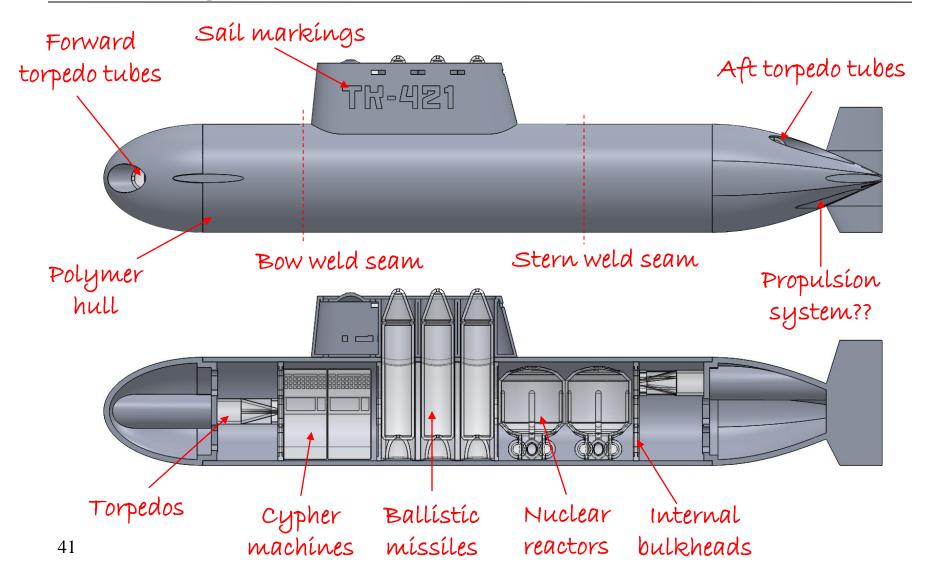
- Work as a team
- Get started early
- Deconstruct the task logically
- Understand the *real* problem
- Implement a solution well

How to fail this course

- Don't contribute to your team
- Do it all at the last minute
- Don't play nice with others
- Fixate on your pet approach
- Do lazy, effortless hacking

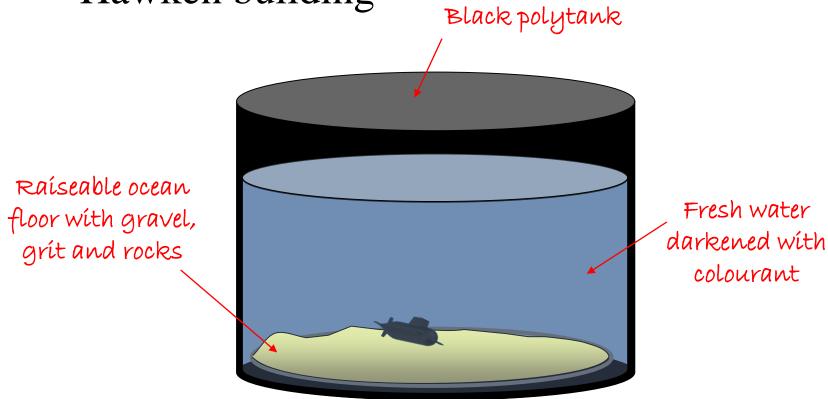
Enough about other people...

Now it's your turn


PART 1

The Project

The task


Build a system for recovering a sunken (miniature) submarine wreck from the (miniature) ocean floor

Intelligence brief: The Sir Nils Olav

Testing tank

• 2m x 2m converted rainwater tank near Hawken building

Here are some numbers

There are a few parameters:

- Recovery time available: 25 minutes
- Sir Nils Olav length: 275 mm
- Sir Nils Olav weight: 300 500 g estimated
- Water depth: 1.5 1.75 m

Full details on restrictions and constraints are in the task specification document

Key points

- Unlike previous years, you are not being asked to build something fully autonomous
 - Much like an open-book exam, the expectations will be correspondingly higher
- This task is intended to be *challenging*
 - Focus on getting readily achievable marks first
 - Don't underestimate the effects of variability
 - Consider limitations on testing availability

Scoring

- Performance will be measured with a point system for demonstrated functionality
- Points will be awarded during scheduled demonstration sessions in week 13
 - 30 minute total time for set up and test
 - Last 5 minutes reserved for pack-down/marking

See rules and description document for full details

Functionality and scoring

Protip: Passing the class pretty much requires you to be able to do this

Basic Functionality	25/25 Points		
Return images of the sea floor to surface	10		
Locate the wreck of Sir Nils Olav	10		
Return image of sail markings to surface	5		

Recovered items	30/30 Points	
Torpedo	2 each	
ICBM	2 each	
Reactor module	4 each	
Code cipher machine	2 each	

Recovered hull sections	35/35 Points
One separate section	10
Two separate sections	15
Three separate sections	20
Two joined sections	25
Two joined sections, one separate section	30
Entire submarine intact	35

Bonus Functionality	10/10 Points
TBA	

The low energy solution

- There is often a simple, elegant low-energy solution to an engineering challenge
 - There is no 'right' way to solve any problem
 - Some people spend much energy on a complex solution, only to get frustrated when someone else finds a much simpler way
 - The simpler way is **more correct**; if you are struggling with your approach, maybe you need to rethink your assumptions?

PART 2

Assessment

My philosophy

- Engineering is the highest, purest and most noble pursuit of the human experience
 - All else is artifice or drudgery
- You are training to be engineers, and this is a chance to actually practice engineering
- You are not your grade*
- There will be second chances
 - * They make me assign you a grade

What to expect

- Expect to learn new things on your own
 - You need will need to know more than just what you've been taught at university thus far
- Expect to apply real effort
 - This course **actively** punishes freeloaders
- Expect to be involved
 - Lots of peer assessment; PAFs can be vicious
- Expect change
 - The specifications will change (intentionally)

A common theme

- Present analysis to justify design decisions
 - Motor torque/power calculations
 - Chassis structural load simulations
 - Clearance and tolerance of components
 - Microcontroller control cycle overhead
 - Decision matrices... and such!

If you can't back up it up with numbers, you're really just **guessing**

Deliverables

• Problem analysis

-10%

• Progress Review 1

– pass/fail†

Progress Seminar*

-10%

• Progress Review 2

− pass/fail†

• Preliminary Report

– pass/fail†

• Final Product Demo*

-60%

• Final Project Report

-20%

- * Team assessment with peer and tutor weightings
- † More on this later

Problem analysis

Due March 10th – 10%

(2 pages max)

- Break down the design problem, determine its scope, requirements and constraints.
- Describe the key underlying engineering design challenges what makes this hard?
- Present a candidate solution, and explain how your approach addresses the problem.
 - Analysis is golden.

Progress Reviews 1 and 2

Due 20 - 24 March and 8 - 12 May

- Tutor-mediated meetings
- Demonstrate your progress in the preceding period with tangible **evidence** of your contributions eg. prototypes, code, etc
- Pass/fail mark based on quality of work and relative progress towards the goal

EXPECT NO MERCY.

Statement of roles

New this year:

- At Progress Review 1, your team will be required to present a statement of team member roles signed by the whole team.
- Roles must be clearly defined
- You will be expected to account for your responsibilities at subsequent reviews

Progress Seminar

Due 10 - 14 April (team assessment) - 10%

- Provide a 10 minute seminar outlining progress towards developing a solution to the problem.
 - Focus on the progress, not the approach
 - Each student presents for roughly equal time
- Assessed by course coordinator and tutors

Preliminary Report

Due 19 May

- Describes the methodical analytical approach to solving your subtask, how it relates to the other subsystems within the project and the analytical process that was used in developing the solution.
- Show the formal, <u>disciplined</u>, <u>quantitative</u> engineering <u>process</u> followed, demonstrating the feasibility of the approach taken.

Final Product Demo

Due week 13 (team assessment) – 60%

- The Main Event show your system works!
- Marks awarded for <u>functionality</u>, <u>achievements</u> and <u>build quality</u>.
- Hand in everything needed to make your system work, including documentation and printouts of design schematics.

Above all: Convince me you can engineer.

Final Report

Due 2 June – 20 %

- Identical to the preliminary report, but incorporating corrections and reflecting any changes from the final two weeks.
- Preliminary report will be returned with comments so that you have an opportunity to revise your work and improve upon it,

Just like in real life!

Incremental demos

 Spontaneous night-before failure of hardware systems is brutal and unfair*.

Just like real life!

- If your system is sort-of working early, you can have it tested in an incremental demo.
 - If the final demo mark is less than what was scored in an incremental demo, you will be awarded the incremental demo mark.

Incremental demos

• Scored just like the final demo, but the mark is capped according to time left in semester

- Week 7: 25%

- Week 9: 50%

- Week 11: 75%

Incremental demos are by appointment only*

* Do not attempt a demo with an obviously non-functional system or you may forfeit future incremental demo privileges

Pass/fail penalties

• Subpar (or absent) pass/fail submissions incur a <u>deduction</u> from your final grade

Project reviews: 5% each

– Preliminary report: 10%

- These deductions are *cumulative*
 - If you were to fail all of them, your maximum achievable grade for the course would be 80%

PAF and TAF

- A substantial fraction of assessment is peermoderated; others are tutor-moderated
 - Regularly adjusts results by up to 2 grades
- It's vital your team recognises your efforts
 - A bitter or frustrated team means a low PAF!
- Ultimately, peer and tutor weighting is mediated by the course coordinator

Peer assessment

- At progress reviews, progress seminar and final demo, you will fill out PAFs
- Your demo mark will be scaled by all of the PAFs, according to a weighting scheme:

- Progress review 1: 10%

Progress seminar: 20%

- Progress review 2: 30%

- Final demo: 40%

Calendar at a glance

You are here here Teams assigned here

Week	Dates	Lecture	Reviews	Demos	Assessment submissions	
1	28/2 - 3/3	Introduction				
2	6/3 – 10/3	Principles of Mechatronic			Problem analysis	
	12/2 17/2	Systems design				
3	13/3 – 17/3	Professional Engineering Topics				
4	20/3 – 24/3	PCB design tips	Progress review 1			
•	20/3 - 24/3	TCB design ups	1 logiess leview 1			
5	27/3 - 31/4	Your soldering is (probably)				
		terrible				
6	3/4 - 7/4					
7	10/4 - 14/4		Progress seminar	25% demo		
Break	17/4 – 21/4				K	
	24/4 20/4					Trut
8	24/4 - 28/4	Switch to				Try to work
9	1/5 – 5/5			50% demo		\odot
		@and A				
10	8/5 – 12/5	sessions	Progress review			
		3033000				
11	15/5 – 19/5			75% demo	Preliminary report	
12	22/5 – 26/5					Madness
12	22/3 - 20/3				7	Madness Week
13	29/5 – 2/6	Closing lecture		Final testing	Final report and	week
"	27/3 2/0	Closhig lecture		That testing	reflection	
	•		•			

PART 3

Class Organisation

Blackboard and splashy website

- This class has a Blackboard page and a "splashy" outwards-facing website
 - If the two ever differ (which they won't), the
 Blackboard page is considered authoritative

Blackboard: learn.uq.edu.au/

Splashy: robotics.itee.uq.edu.au/~metr4810/

Weekly schedule

- Lectures 2 hours once per week
 - Professional topics and Q&A sessions
- Practicals 2 hours twice per week
 - Tutors available in lab (but 24/7 access)
- "Contact" 2 hours twice per week
 - Time set aside for meetings, demos, etc.

Your team should meet and interact continuously outside of class – *at least* once per week

Class clashes

I am aware of some clashes with other classes

- Most notably METR4900 and COMP4702
 - This will ruin your life plan accordingly
- Any others I've missed?

All lecture content will be online

Major announcements go out via Blackboard

... but you'll hear it first in class

Lectures

• Boring, useless lectures help *nobody*

• I will endeavour to provide lectures that are educational, useful and (sort of) entertaining

• Lectures will be student-driven: you tell me what you want to learn about and I'll teach it

Lectures

- Lecture 1: Introduction to the project
- Lecture 2: Principles of mechatronics system design
- Lecture 3: Professional engineering topics
- Lecture 4: PCB design tips
- Lecture 5: Your soldering is terrible (probably)

Topics may be nominated by emailing me, and then voted for on a doodle poll

Lectures

- No, you don't *have* to attend lectures, but if you don't you're really missing out
 - Protip: Students who attend lectures historically do better than those who don't!
- Lectures are the first and most immediate way of hearing about what's happening and getting your questions answered
 - Note: recordings aren't interactive

Some suggested topics

- Principles of teleoperation control
- Vehicle dynamics
- Digital control
- Electromechanical devices
- Computer vision
- Sensor-fusion and filtering
- Localisation
- Schopenhauer and philosophical pessimism

Teams

- Teams will each consist of four people
 - Except for when they don't

- Teams will each be assigned a tool kit
 - Complete kit must be returned or else

 Work together! Contact sessions are set aside for team meetings and collaboration

Teams

- You will have to work with people you hate*

 * Just like in real life!
- You may email me and request one person with whom you do not want to work
 - Exclusion requests must be in by Friday
- Otherwise, teams will be allocated by magic
 - Teams will be assigned in week 2

^{*}If you don't hate them now, you will by the time you're done

- Far more students this year (new friends!)
 - The lab space is really going to suck ... I think
- Consequence: be neighbourly
 - New (smaller) lockers for project work
 - Shared space and resources
 - Get started early; consider how you can work most effectively in the final two crunch weeks

28 February 2017

- The laboratories are governed by the UQ risk management policy
- To work in the lab:
 - You MUST have completed the induction
 - You **MUST** have read the lab risk assessment
 - You MUST wear appropriate footwear
 - You MUST abide by all safety requirements
- If you do not follow the guidelines you will be barred from the lab

- Just in case you forgot:
 - No eating/drinking in the lab
 - No sleeping in the lab
 - No non-METR4810 students in the lab
 - The lab is not for facebook/tindr/grindr/gaming/ socialising/having a life etc.
 - I am held personally responsible for the safety
 and condition of the lab and I get very grumpy.

So don't say you weren't told.

- Keep the lab clean and orderly
- Cleanliness "warning light" system in effect
 - Status noted on Blackboard/class website

Green: Full speed ahead

Yellow: Clean up needed

Red: Danger, Will Robinson!*

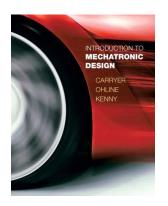
Black: "*Uh oh*."**

^{*}Lab will go to limited hours until cleaned.

^{**}Lab will be locked until further notice.

</eyeofsauron>

Keeping the lab tidy makes for a nicer place to work and makes it easier to get stuff done


Resources

Website

- Everything will be posted on the Blackboard class website: (learn.uq.edu.au)
- Better-looking class website will mirror course materials: (robotics.itee.uq.edu.au/~metr4810)

Textbook

- "Introduction to Mechatronic Design"by Carryer, Ohline and Kenny

(recommended but not required)

Knowledgeable people

- Course Coordinator and Chief Conspirator:
 - Paul Pounds
- Technical Staff
 - Peter Bleakley
 - Ray White
 - Dejan Subaric
 - Grant Tayles
 - Doug Malcolm

- Tutors:
 - William Deer
 - Iain Rudge
- Emergency Auxiliary
 Temporary Back-Up
 Replacement Stand-in
 Teaching Faculty
 - Dr. Surya Singh
 - Dr. Michael Kearny

Contact info

If anything is bothering you, bring it up early

- Rules questions
- Technical issues
- Ordering

- Assessments
- Group problems
- Enrolment
- Disenfranchisment with the sociopolitical gestalt
- > Serious? Email first to arrange a meeting
- ➤ No? Just stop on by! (but email is good too)

On that topic...

- I often get comments in the SECaTs about things that *could* have been addressed during the semester if I'd been told about it
- Don't wait until you're angry in week 13
 - Tell me about it as soon as it comes up so I can explain it/solve it/fix it/find it/sort it right away
- I'm always happy to help! ©

Contact info

Who: Me!

Why: Questions, issues, concerns, ennui!

Where: GPS 78-529 or Wordsmiths

When: 10ish to 4ish – by appointment (or drop in)

What: Coffee or coke (either kind)

How: paul.pounds@uq.edu.au

What happens next?

- Send me group exclusion requests
 - Email me ASAP!
 - Groups will be posted next week
- Attend the afternoon practical session in Hawken c404 Thursday 9th March
 - Toolbox handouts
 - Room induction, 3D printer induction

And start thinking about solutions!

Tune-in next time for...

Principles of Mechatronic Systems Design

or

"Striking a Balance is Making Everybody Equally Unhappy"

Fun fact: Brigadier Sir Nils Olav III is the most senior member and colonel-in-chief of the Norwegian King's Guard.

28 February 2017

Questions?