METR4810 MECHATRONICS TEAM PROJECT 2

Paul Pounds 2 March 2015

DON'T MISS THE BOAT

METR4810

MECHATRONICS TEAM PROJECT I

MMHY

METR4810

- What: Mechatronics team project course
- When: Starting now, going until week 13
- Where: Hawken 50-c404 (mostly)
- Who: Cast of thousands
- **How**: Lots of work
- Why: Get experience developing complex mechatronic and robotic systems... and

hecause it's awesome

Specific class objectives

- Explore the trade-offs involved in complex mechatronic/robotic systems
- Gain experience in multi-variable analytical design synthesis
- Exercise practical cyber-electromechanical integration and trouble-shooting techniques
- Build interpersonal skills working in teams

A quick note on objectives

Your objective: 7/7

My objective: 5/5

Shared priorities:

- Meet course objectives
- Reduce unnecessary work
- Have fun!

The Ghost of Projects Past

2013: Autonomous sailing and navigation

2 March 2015

The Ghost of Projects Past

2014: Autonomous race car challenge

Atypical mark spread

 Distinct mark clusters "Awesome peak" Mark Frequency Final mark /%

• Mark clusters move over time:

• Or, put another way:

	Percentage of class				
	≤3	4	5	6	7
2011	0	19	26	22	33
2013	0	25	24	19	32
2014	6	14	8	28	44

Typical student outcomes

Student tend to fall into two broad groups: The **Get-its** and the **Don't Get-its**

- The Get-its work as a team, deconstruct the task rationally, try to understand the real problem, and implement a solution well
- The Don't Get-its don't

How to pass this course

- Work as a team
- Deconstruct the task rationally
- Understand the problem
- Implement a solution well

Enough about them...

Now it's your turn

2 March 2015

PART 1

The Project

The task

Build a system for launching and landing tiny drone aircraft from a miniature carrier deck

entirely autonomously

The task

- You will carry a "blackbox" sensor package to measure acceleration on launch/landing
 - You will get more points for completing the mission with lower Gs
- Staged testing
 - First launch, then landing, then a whole 'circuit'

And if you can do all that...

Bonus task

Drop a 'dummy' payload over a fixed target

Key points

- You must build an aircraft, plus whatever it needs to take off and land on the deck again
 - If you can do it without a catapult or arrest system, or whatever, that's ok.

- The aircraft is the *least important* part
 - No marks awarded for the aircraft on its own
 - Marks only awarded for the system as a whole

Here are some numbers

There are a few sensible limitations:

- Aircraft weight: <150 g
- Aircraft footprint: <750 mm diameter
- Catapult energy: <15 kJ
- Blackbox: 16mm x 16mm x 3mm, <10 g
- Height of high bar: 0.75 m < h < 1.5 m

Full details on restrictions and constraints are in the task specification document

Testing arena

MS-207 floor plan

Scoring

- Performance will be measured with a points system for demonstrated functionality
- Points to be awarded during scheduled demonstration sessions in week 13
 - Multiple attempts ok
 - 30 minute total time for set up and test

See rules and description document for details

Functionality and scoring

Launch Functionality	40/40 Points	
Aircraft leaves the deck	15	
Aircraft clears the high bar	25	

Protip: Passing the class pretty much requires a successful launch

Landing Functionality	30/30 Points
Aircraft touches the landing deck	10
Aircraft at rest on deck	5
Aircraft at rest on deck 'stable wheels down'	5
Aircraft does not exceed 16 G	1
Aircraft does not exceed 8 G	2
Aircraft does not exceed 4 G	3
Aircraft does not exceed 2 G	4

Circuit Functionality	20/20 Points
Aircraft touches the stern deck	5
Aircraft at rest on the stern deck	5
Aircraft at rest on deck 'stable wheels down'	5
Aircraft does not exceed 8 G	2
Aircraft does not exceed 4 G	3

2 March 2015

PART 2

Assessment

My philosophy

- Engineering is the highest, purest and most noble pursuit of the human experience
 - All else is artifice or drudgery
- You are training to be engineers, and this is a chance to actually practice engineering
- You are not your grade*
- There will be second chances
 - * They make me assign you a grade

What to expect

- Expect to learn new things on your own
 - You need will need to know *more* than just what you've been taught at university thus far
- Expect to apply real effort
 - This course **actively** punishes freeloaders
- Expect to be involved
 - Lots of peer assessment; PAFs can be ~vicious~
- Expect change
 - The specifications will change (intentionally)

A common theme

- Present analysis to justify design decisions
 - Motor torque/power calculations
 - Chassis structural loads
 - Clearance and tolerance of components
 - Microcontroller control cycle overhead
 - ... and such!

If you can't back up it up with numbers, you're really just **guessing**

Deliverables

• Paper analysis and peer review -10%

Progress Review 1 — pass/fail†

• Progress Seminar* - 10%

Progress Review 2 – pass/fail†

Preliminary Report – pass/fail†

• Final Product Demo* -60%

• Final Project Report -20%

* Team assessment with peer and tutor weightings

† More on this later

Paper analysis – Part I

Due March 13th – 5%

(2 pages max)

- Break down the design problem, determine its scope, requirements and constraints.
- Describe the key underlying engineering design challenges.
- Present a candidate solution, and explain how your approach will overcome them.
 - Analysis is golden.

Paper analysis – Part II

Due March 20-5%

- Assess other students' analysis
- Rate them from 1 to 5 for
 - Deconstruction and understanding of the problem
 - Quality and depth of analysis
 - Feasibility i.e. would it actually work?

Parts I and II to be submitted and peer assessed in Platypus

Progress Reviews 1 and 2

Due 30 March – 3 April and 11 May – 15 May

- Tutor-mediated meetings
- Demonstrate your progress in the preceding period with tangible **evidence** of your contributions eg. prototypes, code, etc
- Pass/fail mark based on quality of work and relative progress towards the goal

EXPECT NO MERCY.

Progress Seminar

Due 14 - 18 April (team assessment) - 10%

- Provide a 10 minute seminar outlining progress towards developing a solution to the problem.
 - Focus on the progress, not the approach
 - Each student present for roughly equal time
- Assessed by course coordinator and tutors

Preliminary Report

Due 22 May

- Describes the methodical analytical approach to solving the subtask, how it relates to the other subsystems within the project and the analytical process that was used in developing the solution.
- Show the formal, <u>disciplined</u>, <u>quantitative</u> engineering <u>process</u> followed, demonstrating the feasibility of the approach taken.

Final Product Demo

Due week 13 (team assessment) -60%

- The Main Event show your system works!
- Marks awarded for <u>functionality</u>, <u>achievements</u> and <u>build quality</u>.
- Hand in everything needed to make your system work, including documentation and printouts of design schematics.

Above all: Convince me you can engineer.

Final Report

Due 5 June – 20 %

- Identical to the preliminary report, but incorporating corrections and reflecting any changes from the last two weeks.
- Preliminary report will be returned with comments so that you have an opportunity to revise your work and improve upon it,

Just like in real life!

Incremental demos

• Spontaneous night-before failure of hardware systems is **brutal** and **unfair***.

Just like real life!

- If your system is sort-of working early, you can have it tested in an incremental demo.
 - If the final demo mark is less than what was scored in an incremental demo, you will be awarded the incremental demo mark.

Incremental demos

• Scored just like final demo, but final mark is capped according to time left in semester

- Week 7: 25%

- Week 9: 50%

- Week 11: 75%

Incremental demos are by appointment only*

* Do not attempt a demo with an obviously non-functional system or you may forfeit future incremental demo privileges

Bonus task

- To try the bonus task, you must demonstrate a flight circuit during an incremental demo
 - The idea is to stay ahead of schedule
 - Doing it at the final demo isn't good enough

 Details of the bonus task will be disclosed once you have demonstrated a circuit

Pass/fail penalties

• Subpar (or absent) pass/fail submissions incur a <u>deduction</u> from your final grade

Project reviews: 5% each

– Preliminary report: 10%

- These deductions are *cumulative*
 - If you were to fail all of them, your maximum achievable grade for the course would be 80%

PAF and TAF

- A substantial fraction of assessment is peermoderated; others are tutor-moderated
 - Regularly adjusts results by up to 2 grades
- It's vital your team recognise your efforts
 - A bitter or frustrated team means a low PAF!
- Ultimately, peer and tutor weighting is mediated by the course coordinator

Peer assessment

- At progress reviews, progress seminar and final demo, you will fill out PAFs
- Your demo mark will be scaled by all of the PAFs, according to a weighting scheme:

- Progress review 1: 10%

Progress seminar: 20%

- Progress review 2: 30%

- Final demo: 40%

Calendar at a glance

You are here —

Teams assigned here

Week	Dates	Lecture	Reviews	Demos	Assessment submissions	_ Paul on
1	2/3 – 6/3	Introduction				travel week 1
2	9/3 – 13/3	Principles of Mechatronic Systems design			Problem analysis	week 1
3	16/3 – 20/3	Professional Engineering Topics			Analysis peer review	
4	23/3 – 27/3	Your soldering is (probably) terrible				
5	30/3 – 3/4	???	Progress review 1			Trys
Break	6/4 – 10/4				K	Try to work
6	13/4 – 17/4					્રિક . સ્ટ
7	20/4 – 24/4		Progress seminar	25% demo		
8	27/4 – 2/5	Switch to				
9	4/5 - 8/5	Q and A		50% demo		
10	11/5 – 15/5	sessions	Progress review			
11	18/5 – 22/5			75% demo	Preliminary report	Madnece
12	25/5 – 29/5				F	Madness Week
13	1/6 – 5/6	Closing lecture		Final testing	Final report and reflection	V V C C I C

2 March 2015

PART 3

Class Organisation

Blackboard and splashy website

- This class has a Blackboard page and a "splashy" outwards-facing website
 - If the two ever differ (which they won't), the
 Blackboard page is considered authoritative

Blackboard: learn.uq.edu.au/

Splashy: robotics.itee.uq.edu.au/~metr4810/

Platypus: metr4810.uqcloud.net/platypus

(If you've used Platypus before, your log-in should just work)

Weekly schedule

- Lectures 2 hours once per week
 - Professional topics and Q&A sessions
- Practicals 2 hours twice per week
 - Tutors available in lab (but 24/7 access)
- "Contact" 2 hours twice per week
 - Time set aside for meetings, demos, etc.

Altium notes and soldering tutorials will be made available online (details TBA)

Class clashes

I am aware of some clashes with other classes

- Most notably METR4900
 - This will ruin your life plan accordingly
- Any others I've missed?

All lecture content will be online

Major announcements go out via Blackboard

2 March 2015

Lectures

• Boring, useless lectures help *nobody*

• I will endeavour to provide lectures that are educational, useful and (sort of) entertaining

• Lectures will be student-driven: you tell me what you want to learn about and I'll teach it

Paul Pounds

Lectures

- Lecture 1: Introduction to the project
- Lecture 2: Principles of mechatronics system design
- Lecture 3: Professional engineering topics
- Lecture 4: Your soldering is terrible (probably)
- Lecture 5: ???

Topics may be nominated by emailing me, and then voted for on a doodle poll

Some suggested topics

- Principles of aerodynamics
- Aircraft dynamics
- Projective geometry
- Computer vision
- Sensor-fusion and filtering
- Localisation
- Schopenhauer and philosophical pessimism

Teams

- Teams will each consist of four people
 - Except for when they don't

- Teams will each be assigned a tool kit
 - Complete kit must be returned or else

 Work together! Contact sessions are set aside for team meetings and collaboration

Teams

- You will have to work with people you hate* Just like in real life!
- You may email me and request one person with whom you do not want to work
- Otherwise, teams will be allocated by magic
 - Teams will not be assigned until week 3

- Fewer students this year (Why? No idea!)
 - Space not so terrible ... I think
- Consequence: (still) be neighbourly
 - Lockers for project work under desks
 - Share space and resources
 - Get started early; consider how you can work most effectively in the final two crunch weeks

2 March 2015

- The laboratories are governed by the UQ risk management policy
- To work in the lab:
 - You MUST have completed the induction
 - You **MUST** have read the lab risk assessment
 - You MUST wear appropriate footwear
 - You MUST abide by all safety requirements
- If you do not follow the guidelines you will be barred from the lab

- Just in case you forgot:
 - No eating/drinking in the lab
 - No sleeping in the lab
 - No non-METR4810 students in the lab
 - The lab is not for facebook/tindr/gaming/ socialising/having a life etc.
 - I am held personally responsible for the safety
 and condition of the lab and I get very grumpy.

So don't say you weren't told.

- Keep the lab clean and orderly
- Cleanliness "warning light" system in effect
 - Status noted on Blackboard/class website

Green: Full speed ahead

Yellow: Clean up needed

Red: Danger Will Robinson!*

Black: "*Uh oh*."**

^{*}Lab will go to limited hours until cleaned.

^{**}Lab will be locked until further notice.

2 March 2015

</eyeofsauron>

Keeping the lab tidy makes for a nicer place to work and makes it easier to get stuff done

The testing arena

- Politics and geometry have decreed that the testing arena cannot be in c403 or c404
 - Instead, it will be set up in Mansergh Shaw 207

- When people start testing, we will install netting to catch wayward aircraft
 - Let us know when you're ready to fly before you start testing

Working with the carrier

- Access to the carrier deck will be during scheduled practical sessions
 - Available other times by request
 - I cannot guarantee you access to MS-207
- Some simple rules:
 - You must wear rubber-soled, closed footwear
 - Do not lean against the supports or rail
 - Be SAFE with launchers and tiny rotors

On that point...

Look before you launch

➤ Use your remaining eye to ensure no one is in the flight line

High speed blades are serious business

➤ Don't connect a propeller/fan/rotor to power outside of a protective duct

Be smart, be safe.

Resources

Website

- Everything will be posted on the Blackboard class website: (learn.uq.edu.au)
- Better-looking class website will mirror course materials: (robotics.itee.uq.edu.au/metr4810)
- FAQ document will be updated periodically

Textbook

- "Introduction to Mechatronic Design"by Carryer, Ohline and Kenny

(recommended but not required)

Micronwings.com

- Southern hemisphere's leading purveyor of fine, hand-crafted miniature aircraft
 - Website full of great tips!

- They are kindly providing a group discount
 - Ask me for details before ordering
 - Orders *must* go through ETSG for the discount

Knowledgeable people

- Course Coordinator and Chief Conspirator:
 - Paul Pounds
- Technical Staff
 - Peter Bleakley
 - Ray White
 - Dejan Subaric
 - Keith Lane
 - Doug Malcolm

- Tutors:
 - Reuben Strydom
 - Timothy Filmer
 - Nicholas Hourigan
- Emergency Auxiliary
 Temporary Back-Up
 Replacement Stand-in
 Teaching Faculty
 - Prof. Steve Wilson
 - Dr. Michael Kearny

Contact info

If anything is bothering you, bring it up early

- Rules questions
- Technical issues
- Ordering

- Assessments
- Group problems
- Enrolment
- Disenfranchisment with the sociopolitical gestalt
- > Serious? Email first to arrange a meeting
- ➤ No? Just stop on by! (but email is good too)

Contact info

Who: Me!

Why: Questions, issues, concerns, ennui!

Where: GPS 78-529 or Wordsmiths

When: 10 to 4 - by appointment (or drop in)

What: Coffee or coke (either kind)

How: paul.pounds@uq.edu.au

What happens next?

- Send me group exclusion requests
 - Email me ASAP!
 - Groups will be posted start of week 3
- Attend the afternoon practical session in Hawken c404 Wednesday 18th March (week 3)
 - Toolbox handouts
 - Room induction, 3D printer induction

And start thinking about solutions!

Tune-in next time for...

Principles of Mechatronic Systems Design

or

"Striking a Balance is Making Everybody Equally Unhappy"

Fun fact: At the United States Navy Strike Fighter Tactics Instructor program, anyone who quotes the TOP GUN film is fined \$5.

2 March 2015

Questions?

