Sensor Fusion and Filtering

or

"Making sensors make sense"

Paul Pounds

19 March 2013 University of Queensland

Paul Pounds

But first...

Some house keeping

Calendar at a glance

V	Veek	Dates	Lecture	Reviews	Demos	Assessment submissions
1		25/2 - 1/3	Introduction			
2		4/3 - 8/3	Principles of Mechatronic Systems design			
3		11/3 – 15/3	Principles of Sailing			Design brief
e 4	ļ	18/3 - 22/3	Sensor Fusion and Filtering	Progress review 1	K	
5	;	25/3 -29/3	???			
В	Break	1/4 - 5/4				
6	i	8/4 - 12/4	By request	Progress seminar		
7	,	15/4 - 19/4	By request		25% demo	
8	;	22/4 - 26/4				
9)	29/4 - 3/5		Progress review	50% demo	
1	.0	6/5 - 10/5				
1	1	13/5 - 17/5			75% demo	Preliminary report
1	2	20/5-24/5				
1	3	27/5 - 31/5	Closing lecture		Final testing	Final report and addendum

FAQ Roundup

- Do rudders count towards the hull dimensions?
 - No they can extend beyond the 150 mm x 75 mm bounding box (but then will be invalid for scoring).

Next week's lecture

• Nobody nominated anything.

- Seriously? Why would you not do that?

• Ok, ok – don't panic. We can fix this.

I propose to instead run a best-practices soldering tutorial during the lecture time – Because your soldering is terrible (probably).

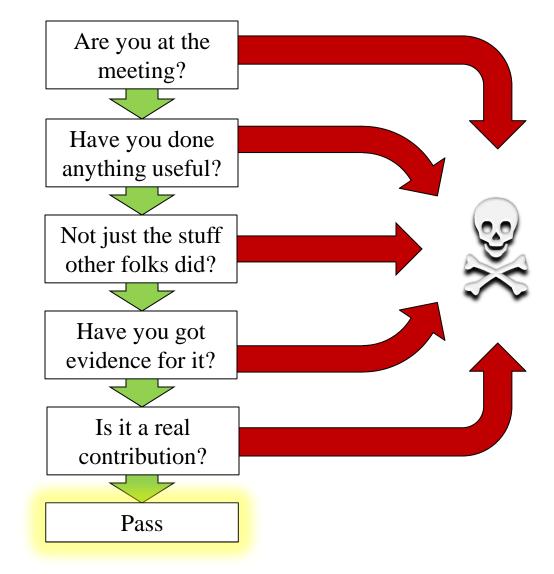
Progress Review

- Show you have been doing stuff!
 - You will have 3-5 minutes to demonstrate your contribution to the team
- Bring evidence!
 - Sketches, notes, prototypes, analysis, work breakdowns, etc. are all good.
- Pass/fail assessment
 - It should be difficult to fail this if you have actually done something useful

Progress Review sessions

Group times:

Wed 20

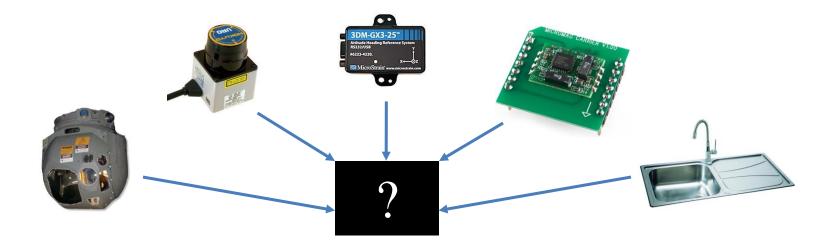

- Group ? 9:00-9:30
- Group 15 9:30-10:00
- Group 8 10:00-10:30
- Group 14 10:30-11:00
- Group 4 14:00-14:30 A
- Group 2 14:00-14:30 B
- Group 1 14:30-15:00 A
- Group 7 14:30-15:00 B

Thursday 21

- Group 13 9:00-9:30
- Group 11 9:30-10:00
- Group 10 10:00-10:30
- Group 5 10:30-11:00
- Group 3 13:00-13:30
- Group 6 13:30-14:00
- Group 9 14:00-14:30
- Group 12 14:30-15:00

Group B sessions are held in Axon 211, all other sessions are in GPS 310

Progress Review flow chart



8

Paul Pounds

Onwards to sensor fusion

To fusion and beyond!!

What is this sensing stuff?

• How systems find out about the world

And themselves

- Sensing is the measurement of some physical property of the environment
 - Physical property is analogous to the measurand, related to the state value of interest
 - Physical signal is typically transduced into an electrical signal (and often digitised)

Snuh?

• Sensors use a physical property to produce a signal related to the thing being measured.

Right.

An incomplete sensor taxonomy

Domain	Modality	Example physics	Example sensor
		Mechanical	→ Gravity float
	'Internal sense'	Electrical	→ Current draw
Intrinsic	Nociception ———	Electromechanical	→ Strain gauge
mamilie	Proprioception	→ Optical	Rotary encoder
		Optical	Ring laser gyro
	Equilibrioception	→ Electromechanical ———	→ MEMS gyro
		Microfluidic	Vestibular gyro
	Tactition ———	→ Electromechanical ———	> Switch
Boundary	Gustation		\rightarrow CH ₄ detector
Doundary	Olfaction	Electrochemical	→ Hyrgomometer
	Audition ———	→ Electromechanical	Microphone
			Camera
	Vision —	Photoelectric	→ Optic flow
Extrinsic		Acoustic	→ Sonar
	Lateration	→ Photoelectric	→ 3D scanner
		 Electromagnetic 	→ GPS
12	Magnetoception —	→ Electromagnetic	→ Compass

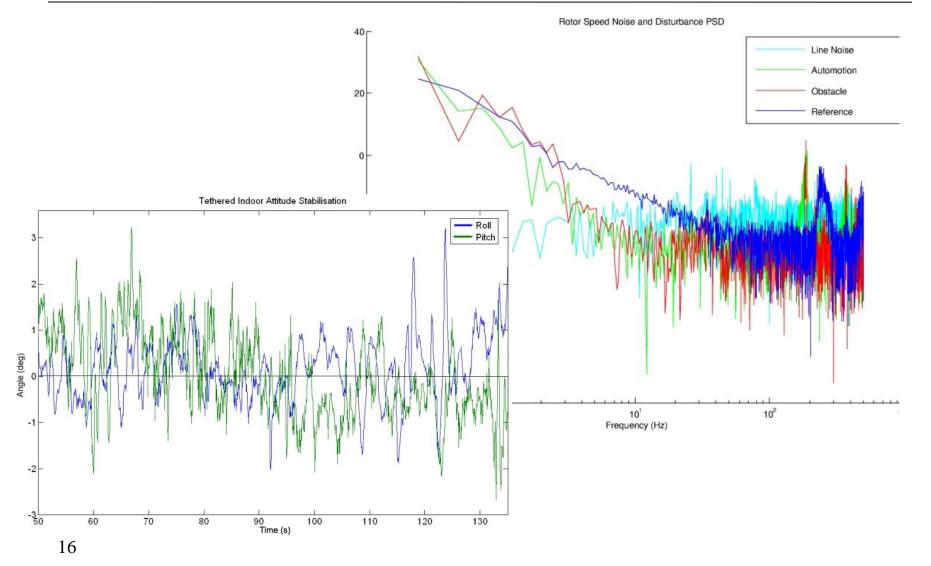
More deeply

• Measurement is an attempt to find the true value of some real state parameter

– Measurements and true states generally differ

• For practical, entropic, budgetary and philosophical reasons, no sensor is perfect.

- Some are merely 'adequate'.


Quick terminology

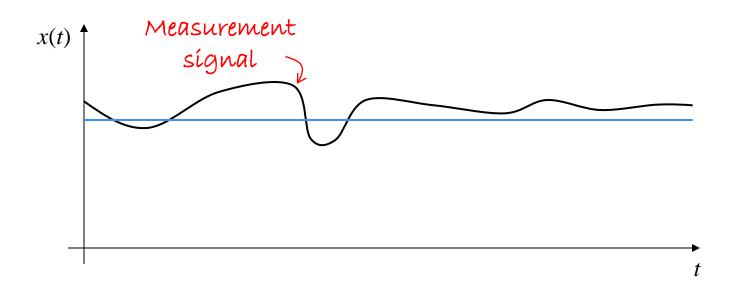
- State: numeric parameterisation of a thing
- Signal: time-varying state function that conveys information
- True state: real state being sought
- Measurement: signal from a sensor
- Estimate: inferred guess of the true state

Signals imperfect

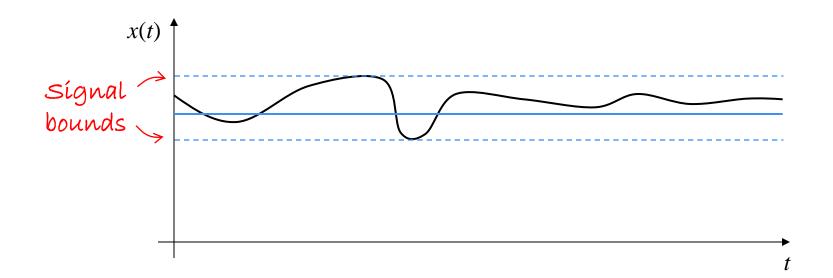
- Measurement signals can be thought of as containing information about the true value
- Confounding effects obscure information
 - Entropic noise (eg. thermal noise)
 - Coupled noise/cross-talk
 - Bias
 - Nonlinearity

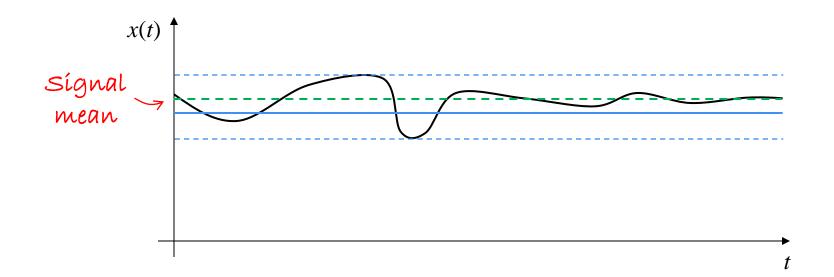
Postcards from the front

Filtering


- Filters act on signals to remove confounding effects and extract information
- Many common examples:
 - Low pass filter: remove high frequency noise
 - High pass filter: remove low frequency bias
 - Common-mode filter: remove line coupling

Use multiple measurements of a signal in time to estimate the true state – temporal diversity


• Given time-history measurements of a state, what is its 'most likely' true value?


• The time-history of the measurement signal conveys information of the true value

• Examining temporal properties of the signal allow us to infer the true value

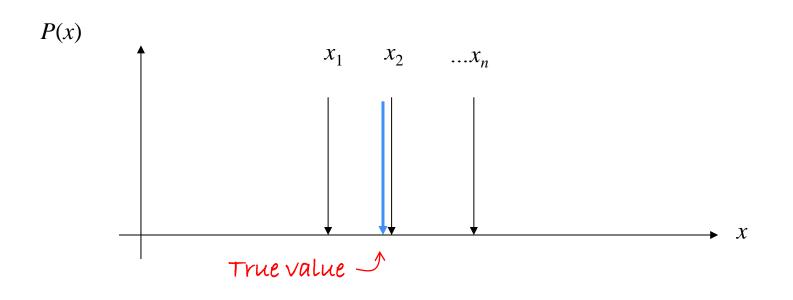
• Examining temporal properties of the signal allow us to infer the true value

Paul Pounds

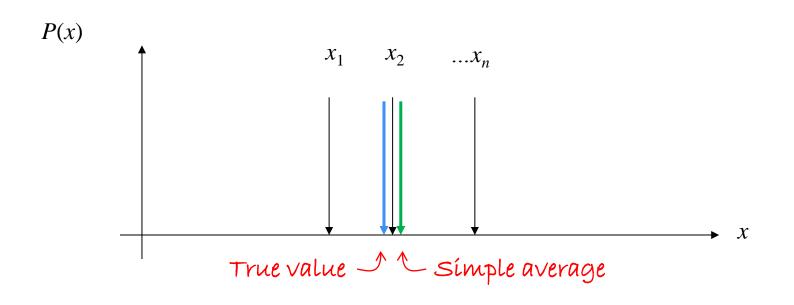
Depressing truth

A simple RC or 'exponential' 1st order filter will solve 80% of your practical noise elimination or smoothing problems*

• Quick, easy, and a snap to code/build!

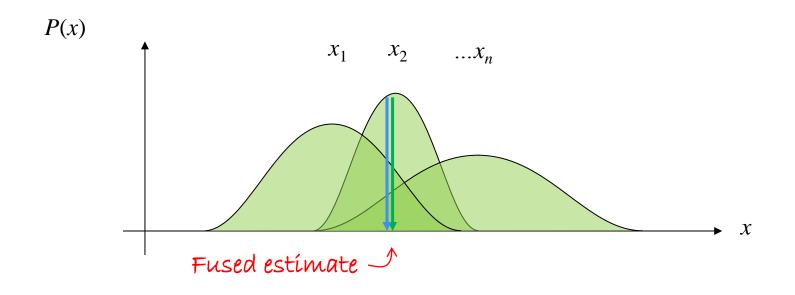

*The other 20% requires an engineering degree or two

Sensor fusion


- Combination of multiple different sensors
 - Each sensor adds information (even poor ones), allowing for more accurate estimates
 - Sensors must measure the same states, or states relatable through a system model
 - eg. compass and heading gyro to estimate bearing

Use multiple sensor modalities to estimate the true state – measurement diversity

• *n* sensors can produce more accurate estimates together than possible individually


• *n* sensors can produce more accurate estimates together than possible individually

• Sensor mean and variance encode more information than an instantaneous sample

• Can incorporate stochastic signal behaviour

Fundamental requirement

- Filtering/fusion tacitly assume we know something about the signal being sought:
 - Frequency band of true value/noise
 - Relative amplitude/power
 - Waveform shape or encoding
- Use knowledge to isolate known properties of the signal and suppress spurious effects (Naturally, you can also filter fused estimates)

Ergodic principle

- Over long enough time scales, a constant signal is equal to its mean
 - In ergodic dynamical systems of constant energy, all states are visited equally often
- Holds in the case of normal (Gaussian) distributions
 - This is why averaging works static 'window'
 - Not necessarily the case for 'coloured' noise

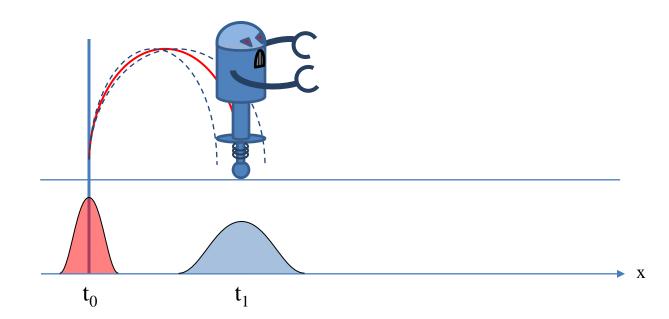
That's great... but?

- How do we get that fused estimate?
- Several ways:
 - Weighted averaging
 - Least squares
 - Kalman filter
 - Particle filter

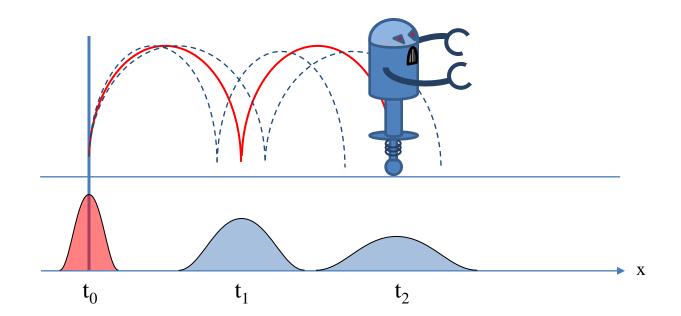
- Complementary filter
- Linear observer
- Bayesian network
- Dempster-Shafer

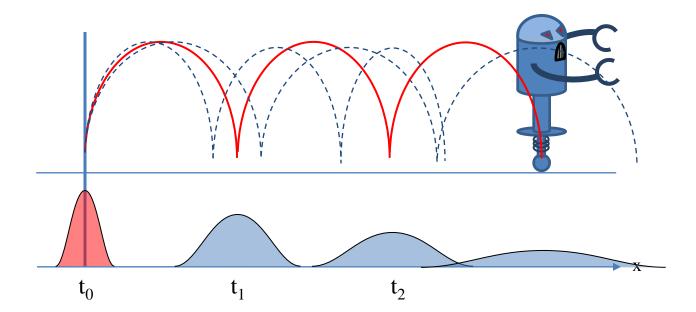
Key point: subsequent measurements cause estimates (and their variance) to converge

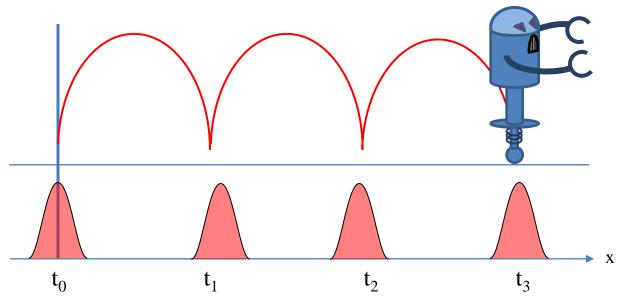
The Kalman filter


- Suppose we have a noisy measurement of our current state, with some estimate of variance
- If we know the system dynamics we can guess what the next state will be (with variance)
 - Compare where we think we should be to where our sensors tell us we are
 - Take a weighted average of the two, based on their covariance, as the new state

Eg. Pogo stick robot


• We know its approximate position and velocity


- We know its approximate position and velocity
 - Using ballistics we can guess where it will land after each jump


- We know its approximate position and velocity
 - Using ballistics we can guess where it will land after each jump... becoming less certain with time

- We know its approximate position and velocity
 - Using ballistics we can guess where it will land after each jump... becoming less certain with time


- We know its approximate position and velocity
 - Using ballistics we can guess where it will land after each jump... becoming less certain with time
 - After each jump, we get a new measurement and we can refine our estimate

37

Eg. Pogo stick robot

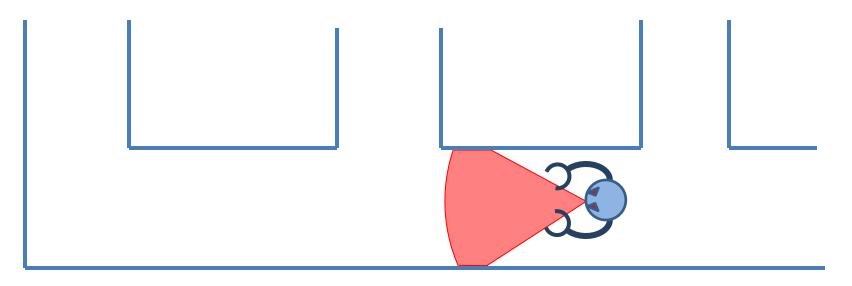
- We know its approximate position and velocity
 - Using ballistics we can guess where it will land after each jump... becoming less certain with time
 - After each jump, we get a new measurement and we can refine our estimate $_{K_{I}L_{L} A_{L}L H_{0}M_{A}N_{S}}$

Other approaches

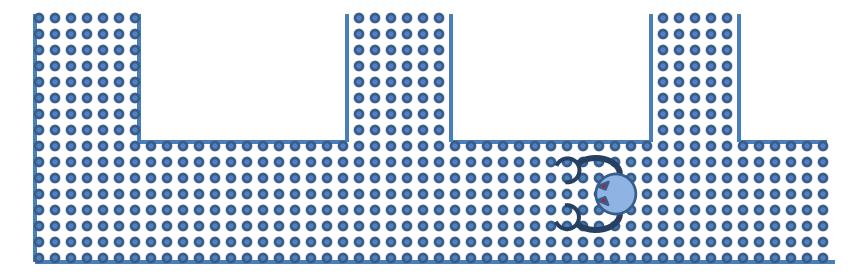
- By now you should be completely sick of hearing about the Kalman filter
 - If not, go here:

digi.physic.ut.ee/mw/images/d/d5/Poormankalman.pdf

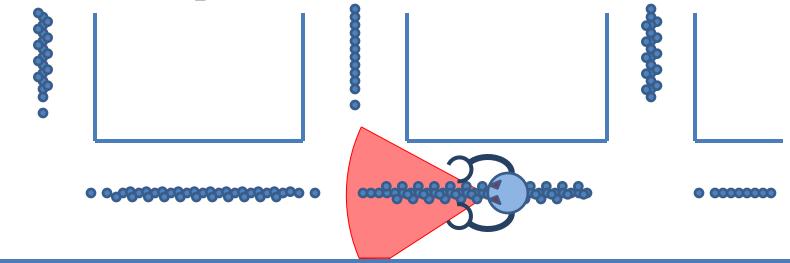
• Let's also look at the particle filter, the complementary filter and linear observer

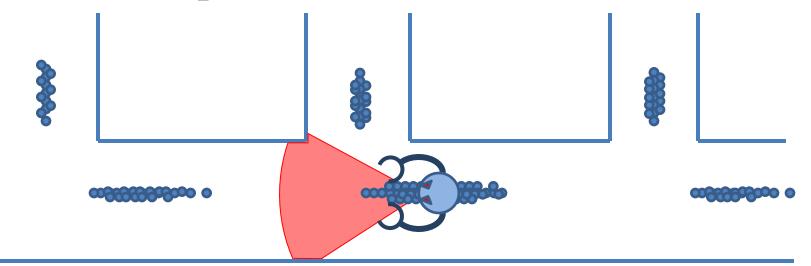

– Surya Singh also has a nice primer on estimators:

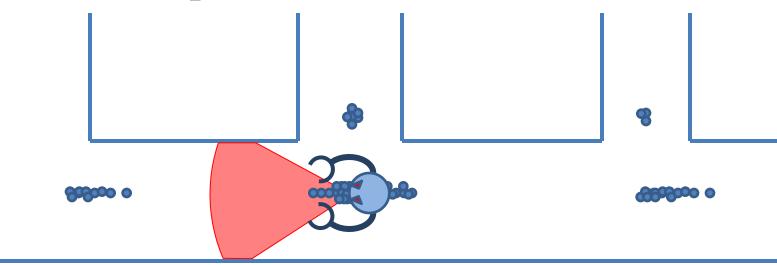
robotics.itee.uq.edu.au/~metr3800/doc/ClassNotes_METR3800.pdf

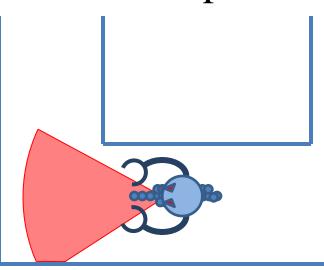

The particle filter

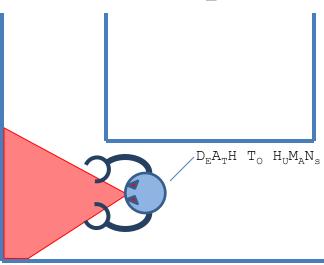
- Similar concept, but uses discretely sampled estimates of the space of possible states
 - Simulate each step in time track the particles
 - Find out how much each subsequent measurement agrees with each particle
 - Use the 'best' particle as the estimate
 - Occasionally resample around the most reliable particle


• Robot moved to an unknown location


- Robot moved to an unknown location
- Estimate we could be anywhere

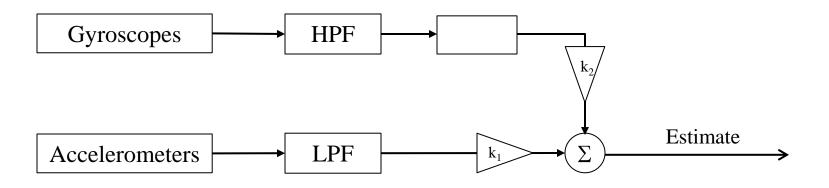

- Robot moved to an unknown location
- Estimate we could be anywhere subsequent observations reduce likely candidate positions


- Robot moved to an unknown location
- Estimate we could be anywhere subsequent observations reduce likely candidate positions


- Robot moved to an unknown location
- Estimate we could be anywhere subsequent observations reduce likely candidate positions

- Robot moved to an unknown location
- Estimate we could be anywhere subsequent observations reduce likely candidate positions

- Robot moved to an unknown location
- Estimate we could be anywhere subsequent observations reduce likely candidate positions


Complementary filter

- Exploits heterogeneous sensor performance to overcome individual shortcomings
- Motivating application: MEMS IMU

 Accelerometers: unbiased but very noisy
 Gyroscopes: only kinda noisy but biased

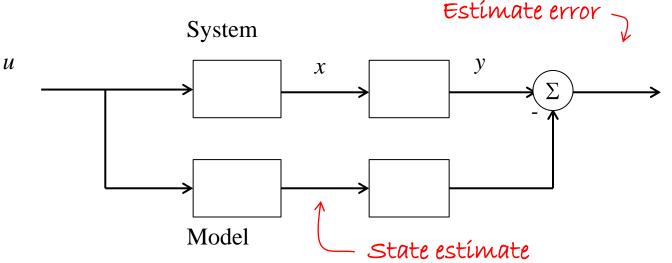
Why not just use the accelerometers to correct the low-frequency bias of the gyros?

Complementary filter

- Exploit signal bandwidth properties:
 - Low pass filter accelerometer angle estimates
 - High pass filter gyros and integrate
 - Output is a weighted mix of estimates

Gratuitous name drop: ANU's Prof. Rob Mahony, Paul's PhD supervisor, wrote the complementary filter commonly used in UAV avionics stacks

Paul Pounds


Linear observers

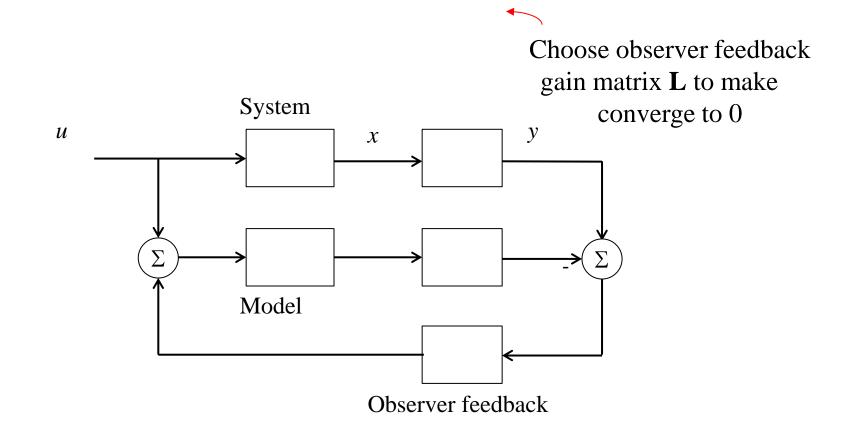
Quick blast from the past semester: METR4202 observers

Note: if you haven't done METR4202, don't worry – this won't be on the exam... and also there *is* no exam.

Linear observers

• Observers (aka "estimators") are used to infer the hidden states of a system from measured outputs.

A controller is designed using estimates in lieu of full measurements


Linear observers

- The state estimate can be treated like a control system itself
 - Dynamics to update the estimate:
 - Using an 'error signal', , the difference between the real output measurement and the output estimate the state estimate can be driven by a feedback term.

Paul Pounds

Linear observers

• Just like you might expect:

Cross-contextualisation

- State-space observers are a sensor-fusion method that infers states from signals
 - But if observers are control functions...
 - And observers are filtering functions...

Profound realisation:

• Fundamentally, filtering is really control and control is really filtering!

– Oh boy!

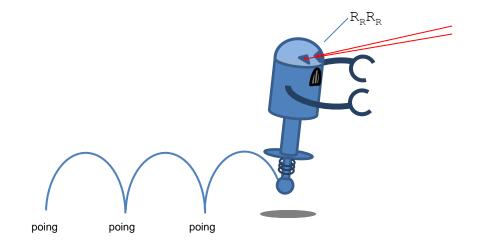
Some practical advice

- Some things engineers *never* try to build if they can buy, copy or otherwise avoid it:
 - Power supplies
 - Motor drivers
 - Analog amplifiers
 - Inertial Measurement Units
 - Sensor fusion and estimation algorithms

There are many good pre-canned S-F algorithms out there – try using them before writing your own!

Some practical advice

When combining sensors:


- Align measurements spatially and temporally
 - Calibrated kinematic transformation matrix?
 - Time-stamps, common interrupts lines?
- Use sensors to correct other sensors
 - Compensate motion of camera with IMU?
 - Augment dead-reckoning with optical flow?
- Reduce inter-sensor vibration/flex rigidity!

Some practical advice

- Directly sense the state of interest, if possible
 Avoid numerical integration or differentiation
- Hardware filters use fewer processor cycles
- Software filters take up less board (usually)
- Cheap sensor is cheap; better sensor is better
 - Fused cheap sensors might be *almost* as good
 - The easy solution is often a better sensors

Paul Pounds

Questions?

Paul Pounds

Tune-in next time for...

Your soldering is terrible

or

"How I learned to stop worrying and love flux"

Fun fact: One of the first practical applications of the Kalman filter was attitude estimation of the Apollo spacecraft.