METR3800 — Mechatronics Team Project 2 Paul Pounds 19 March 2013

Sensor Fusion and Filtering

or
“Making sensors make sense”

Paul Pounds

19 March 2013
University of Queensland



METR3800 — Mechatronics Team Project 2 Paul Pounds 19 March 2013

But first...

Some house keeping
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Calendar at a glance

You are
heve

addendum

Week Dates Lecture Reviews Demos Assessment submissions
2 4/3 - 8/3 Principles of Mechatronic

Systems design
4 18/3 — 22/3 Sensor Fusion and Filtering Progress review 1

=~

5 25/3 -29/3 ?27?
Break 1/4 —5/4
6 8/4 —12/4 By request Progress seminar
7 15/4—19/4 | By request _
8 22/4 —26/4
9 29/4 - 3/5 Progress review _
10 6/5 —10/5
11 13/5-17/5 _ Preliminary report
12 20/5 — 24/5
13 27/5-31/5 Closing lecture _ Final report and

OMG!
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FAQ Roundup

Do rudders count towards the hull dimensions?

— No —they can extend beyond the 150 mm x 75 mm bounding box (but then will be
invalid for scoring).
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Next week’s lecture

« Nobody nominated anything.
— Seriously? Why would you not do that?

* Ok, ok —don’t panic. We can fix this.

» | propose to instead run a best-practices
soldering tutorial during the lecture time

— Because your soldering is terrible (probably).
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Progress Review

« Show you have been doing stuff!

— You will have 3-5 minutes to demonstrate your
contribution to the team

 Bring evidence!

— Sketches, notes, prototypes, analysis, work
breakdowns, etc. are all good.

e Pass/faill assessment

— It should be difficult to fail this if you have
actually done something useful
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Progress Review sessions

Group times:

Wed 20

« Group1l5 9:30-10:00

« Group8 10:00-10:30

« Group14 10:30-11:00

« Group4 14:00-14:30 A
« Group 2 14:00-14:30 B
« Groupl 14:30-15:00 A
« Group?7 14:30-15:00 B

Thursday 21

Group 13
Group 11
Group 10
Group 5
Group 3
Group 6
Group 9
Group 12

9:00-9:30
9:30-10:00
10:00-10:30
10:30-11:00
13:00-13:30
13:30-14:00
14:00-14:30
14:30-15:00

Group B sessions are held in Axon 211, all other sessions are in GPS 310
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Progress Review flow chart

Are you at the
meeting?

@

Have you done
anything useful?

\

Not just the stuff
other folks did?

\

Have you got
evidence for it?

\

t

Is it a real
contribution?

\

Pass
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Onwards to sensor fusion

To fusion and beyond!!




METR3800 — Mechatronics Team Project 2 Paul Pounds 19 March 2013

What Is this sensing stuff?

» How systems find out about the world
— And themselves

 Sensing Is the measurement of some
physical property of the environment

— Physical property is analogous to the
measurand, related to the state value of interest

— Physical signal is typically transduced into an
electrical signal (and often digitised)

10
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Snuh?

 Sensors use a physical property to produce a
signal related to the thing being measured.

Right.

11
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An incomplete sensor taxonomy

Domain Modality Example physics Example sensor
Mechanical > Gravity float
‘Internal sense’ 4 Electrical > Current draw

Intrinsic Nocic_eption_ > Electromechanical > Strain gauge
Proprioception Optical > Rotary encoder
Optical > Ring laser gyro
Equilibrioception Electromechanical > MEMS gyro
Microfluidic » Vestibular gyro
Tactition > Electromechanical > Switch
Boundary Gustat_ion o CH, detector
Olfaction > Electrochemical > Hyrgomometer
Audition > Electromechanical » Microphone
Camera
Vision > Photoelectric > Optic flow
Extrinsic . Acoustic > Sonar
Lateration > Photoelectric » 3D scanner
T Electromagnetic » GPS

12 Magnetoception —— Electromagnetic » Compass
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More deeply

« Measurement is an attempt to find the true
value of some real state parameter

— Measurements and true states generally differ

 For practical, entropic, budgetary and
philosophical reasons, no sensor is perfect.

— Some are merely ‘adequate’.

13
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Quick terminology

14

State: numeric parameterisation of a thing

Signal: time-varying state function that
conveys information

True state: real state being sought
Measurement: signal from a sensor
Estimate: inferred guess of the true state
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Signals imperfect

» Measurement signals can be thought of as
containing information about the true value

« Confounding effects obscure information
— Entropic noise (eg. thermal noise)
— Coupled noise/cross-talk
— Bias
— Nonlinearity

15
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Postcards from the front

Rotor Speed Noise and Disturbance PSD

40
Line Noise
\. Automotion
20
0 -

Tethered Indoor Attitude Stabilisation
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-
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o

Angle (deg)
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Filtering

* Filters act on signals to remove
confounding effects and extract information

« Many common examples:
— Low pass filter: remove high frequency noise
— High pass filter: remove low frequency bias
— Common-mode filter: remove line coupling

Use multiple measurements of a signal in time
to estimate the true state — temporal diversity

17
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The Intuitive 1dea

 Glven time-history measurements of a state,
what 1s 1ts ‘most likely’ true value?
x(t) 1

Truwe value
~7

18
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The Intuitive 1dea

 The time-history of the measurement signal
conveys information of the true value

X(t) A Measurement
stgnal D

U T e I —
~N— U

19
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The Intuitive 1dea

« Examining temporal properties of the signal
allow us to infer the true value

X(t) 1

bounadls [~ /

20
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The Intuitive 1dea

« Examining temporal properties of the signal
allow us to infer the true value

X(t) 1

Stgnal
WEAan

21
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Depressing truth

A simple RC or ‘exponential’ 15t order filter
will solve 80% of your practical noise
elimination or smoothing problems*

 Quick, easy, and a snap to code/build!

*The other 20% requires an engineering degree or two
22
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Sensor fusion

« Combination of multiple different sensors

— Each sensor adds information (even poor ones),
allowing for more accurate estimates

— Sensors must measure the same states, or states
relatable through a system model

eg. compass and heading gyro to estimate bearing

Use multiple sensor modalities to estimate the
true state — measurement diversity

23
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The Intuitive 1dea

* N Sensors can produce more accurate
estimates together than possible individually

P(x)

True value )

24
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The Intuitive 1dea

* N Sensors can produce more accurate
estimates together than possible individually

P(x)

True value - Stmple average

25
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The Intuitive 1dea

e Sensor mean and variance encode more
Information than an instantaneous sample

P(x)

26
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The Intuitive 1dea

 Can incorporate stochastic signal behaviour

P(x)

Fused estimate -

27
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Fundamental requirement

* Filtering/fusion tacitly assume we know
something about the signal being sought:
— Frequency band of true value/noise
— Relative amplitude/power
— Waveform shape or encoding

» Use knowledge to isolate known properties
of the signal and suppress spurious effects

(Naturally, you can also filter fused estimates)

28
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Ergodic principle

 Over long enough time scales, a constant
signal Is equal to Its mean

— In ergodic dynamical systems of constant
energy, all states are visited equally often

» Holds in the case of normal (Gaussian)
distributions
— This Is why averaging works — static ‘window’
— Not necessarily the case for ‘coloured’ noise

29
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That’s great... but?

« How do we get that fused estimate?

 Several ways:
— Weighted averaging  — Complementary filter

— Least squares — Linear observer
— Kalman filter — Bayesian network
— Particle filter — Dempster-Shafer

Key point: subsequent measurements cause
estimates (and their variance) to converge

30
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The Kalman filter

» Suppose we have a noisy measurement of our
current state, with some estimate of variance

* |f we know the system dynamics we can guess
what the next state will be (with variance)

— Compare where we think we should be to where
our sensors tell us we are

— Take a weighted average of the two, based on their
covariance, as the new state

31
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Eg. Pogo stick robot

« \We know Its approximate position and velocity

32 to
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Eg. Pogo stick robot

« \We know Its approximate position and velocity

— Using ballistics we can guess where it will land
after each jump

33
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Eg. Pogo stick robot

« \We know Its approximate position and velocity

— Using ballistics we can guess where it will land
after each jump... becoming less certain with time

34
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Eg. Pogo stick robot

« \We know Its approximate position and velocity

— Using ballistics we can guess where it will land
after each jump... becoming less certain with time

35
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Eg. Pogo stick robot

« \We know Its approximate position and velocity

— Using ballistics we can guess where it will land
after each jump... becoming less certain with time

— After each jump, we get a new measurement and
we can refine our estimate

36
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Eg. Pogo stick robot

« \We know Its approximate position and velocity

— Using ballistics we can guess where it will land
after each jump... becoming less certain with time

— After each jump, we get a new measurement and
we can refine our estimate

/KILL AL HyM,Ng

37
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Other approaches

* By now you should be completely sick of
hearing about the Kalman filter

— If not, go here:
digi.physic.ut.ee/mw/images/d/d5/Poormankalman.pdf

» Let’s also look at the particle filter, the
complementary filter and linear observer

— Surya Singh also has a nice primer on estimators:
robotics.itee.ug.edu.au/~metr3800/doc/ClassNotes METR3800.pdf

38
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The particle filter

 Similar concept, but uses discretely sampled
estimates of the space of possible states
— Simulate each step In time - track the particles

— Find out how much each subsequent
measurement agrees with each particle

— Use the ‘best’ particle as the estimate

— Occasionally resample around the most reliable
particle

39
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Eg. Kidnapped Robot Problem

 Robot moved to an unknown location

o8

40
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Eg. Kidnapped Robot Problem

 Robot moved to an unknown location
 Estimate we could be anywhere

:::::::::::::::::::::::::::::::@::::::::::::

41
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Eg. Kidnapped Robot Problem

 Robot moved to an unknown location

 Estimate we could be anywhere —
subsequent observations reduce likely

candidate positions

| l i

42



Paul Pounds 19 March 2013

METR3800 — Mechatronics Team Project 2

Eg. Kidnapped Robot Problem

 Robot moved to an unknown location

 Estimate we could be anywhere —
subsequent observations reduce likely

candidate positions

$ f f

43
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Eg. Kidnapped Robot Problem

 Robot moved to an unknown location

 Estimate we could be anywhere —
subsequent observations reduce likely

candidate positions

44
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Eg. Kidnapped Robot Problem

 Robot moved to an unknown location

 Estimate we could be anywhere —
subsequent observations reduce likely

candidate positions

> N

45
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Eg. Kidnapped Robot Problem

 Robot moved to an unknown location

 Estimate we could be anywhere —
subsequent observations reduce likely

candidate positions

ﬁ / o

46
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Complementary filter

 EXploits heterogeneous sensor performance
to overcome individual shortcomings

« Motivating application: MEMS IMU
— Accelerometers: unbiased but very noisy
— Gyroscopes: only kinda noisy but biased

Why not just use the accelerometers to correct
the low-frequency bias of the gyros?

47
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Complementary filter

Gyroscopes

HPF

Accelerometers

LPF

Estimate

"2 >

 Exploit signal bandwidth properties:
— Low pass filter accelerometer angle estimates
— High pass filter gyros and integrate
— Output Is a weighted mix of estimates

Gratuitous name drop: ANU’s Prof. Rob Mahony, Paul’s PhD supervisor,
wrote the complementary filter commonly used in UAV avionics stacks

48
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|_Inear observers

Quick blast from the past semester:
METR4202 observers

Note: if you haven’t done METR4202, don’t worry —
this won’t be on the exam... and also there iS no exam.

49
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|_Inear observers

* Observers (aka “estimators”) are used to
Infer the hidden states of a system from
measured outputs.

Estimate ervor 7/

System

u X y
> > % >
Model t State estimate

A controller is designed using estimates in lieu of full measurements

50
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|_Inear observers

e The state estimate can be treated like a
control system itself

— Dynamics to update the estimate:

— Using an ‘error signal’, , the
difference between the real output measurement
and the output estimate — the state estimate can
be driven by a feedback term.

o1
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|_Inear observers

» Just like you might expect:

<\
Choose observer feedback
gain matrix L to make
System ,  converge to 0

A4

(D— ()

pd
~

A4

52 Observer feedback
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Cross-contextualisation

» State-space observers are a sensor-fusion
method that infers states from signals

— But if observers are control functions...

— And observers are filtering functions...

Profound realisation:

» Fundamentally, filtering is really control
and control is really filtering!

— Oh boy!

53
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Some practical advice

« Some things engineers never try to build if
they can buy, copy or otherwise avolid It:
— Power supplies
— Motor drivers
— Analog amplifiers
— Inertial Measurement Units
— Sensor fusion and estimation algorithms

There are many good pre-canned S-F algorithms out
there — try using them before writing your own!

54
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Some practical advice

When combining sensors:

 Align measurements spatially and temporally
— Calibrated kinematic transformation matrix?
— Time-stamps, common interrupts lines?

« Use sensors to correct other sensors
— Compensate motion of camera with IMU?
— Augment dead-reckoning with optical flow?

« Reduce inter-sensor vibration/flex — rigidity!

55
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Some practical advice

 Directly sense the state of interest, If possible
— Avoid numerical integration or differentiation

« Hardware filters use fewer processor cycles
« Software filters take up less board (usually)

» Cheap sensor Is cheap; better sensor Is better
— Fused cheap sensors might be almost as good
— The easy solution is often a better sensors

56
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Questions?

o7
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Tune-in next time for...

Your soldering is terrible
or

“How I learned to stop worrying and love flux”

Fun fact: One of the first practical applications of the Kalman filter was
attitude estimation of the Apollo spacecraft.

58



