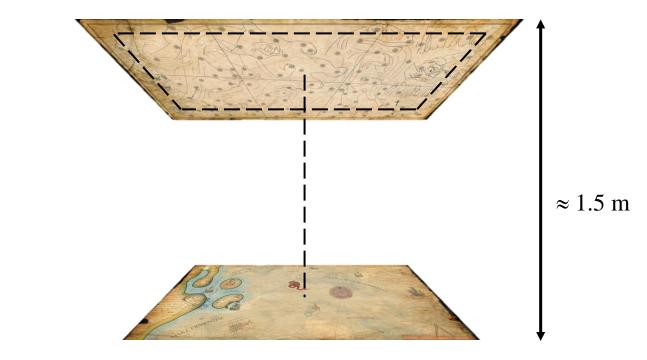
1

Principles of Sailing

or

"Main sheets, spinnakers and belaying pins ahoy!"

Paul Pounds


12 March 2013 University of Queensland

But first...

Some house keeping

House keeping

• Tank specifications are now updated on Blackboard and the class website

– ETA of tank: still end of March

Calendar at a glance

	Week	Dates	Lecture	Reviews	Demos	Assessment submissions	
	1	25/2 - 1/3	Introduction				
	2	4/3 - 8/3	Principles of Mechatronic				
You are	3	11/3 – 15/3	Systems design Principles of Sailing			Design brief	
You are here	5	11/5 - 15/5	T metples of Saming			Design oner	
	4	18/3 - 22/3	By request	Progress review 1			OMG!
	5	25/3 -29/3	By request				
	Break	1/4 - 5/4					
	6	8/4 - 12/4	By request	Progress seminar			
	7	15/4 - 19/4	By request		25% demo		
	8	22/4 - 26/4	By request				
	9	29/4 - 3/5	By request	Progress review	50% demo		
	10	6/5 - 10/5					
	11	13/5 - 17/5			75% demo	Preliminary report	
	12	20/5-24/5					
	13	27/5 - 31/5	Closing lecture		Final testing	Final report and addendum	

FAQ Roundup

- Our group member hasn't gotten in touch with us!
 - Have you emailed them? If not, email me and I'll help you track them down.
- What is the wavelength/part number of the LEDs?
 - Uhhhh.... White visible light. I *could* theoretically find the part number, but seriously I'm not going to go digging to find it and it won't really help you. The LED radiation pattern has a 70 deg spread.

• Will the room lights be on/off?

- There is no room – the testing area is outdoors. However, there will be complete cover overhead, so you (hopefully) won't have to compete with the Cursed Daystar.

• Can we use a Raspberry Pi?

- Yes. I won't respect you in the morning, but yes.

FAQ Roundup

• Can we use an onboard camera?

- Sure. You can't use an offboard camera, but onboard is totally ok.
- What do we have to do with the design brief?
 - Show you have understood the design problem. Tell me what part of the project you are undertaking and how it fits with the team's approach. Highlight the key technical problems. Most of all, convince me that you have actually thought about the problem.

Better yet – read the Blackboard assessment description!

• Is there a marking rubric available?

– Yup. Read the Blackboard page.

Design brief design brief

• The objective of the design brief is to **convince** the client that the student has **understood the problem**, its **scope**, and its **requirements** and has **developed insights** into how the problem may be addressed. The student must provide a **description of the aspects** of the project he or she will be working on, a <u>succinct analysis</u> of the **key design challenges** of these aspects of the problem, the **proposed approach** to be undertaken in resolving them, and how the student's proposed solution **relates to other subsystems** within the project. Students will be assessed on the **thoroughness and insight** demonstrated in the brief. The design brief is to be <u>no more than two A4 pages</u>.

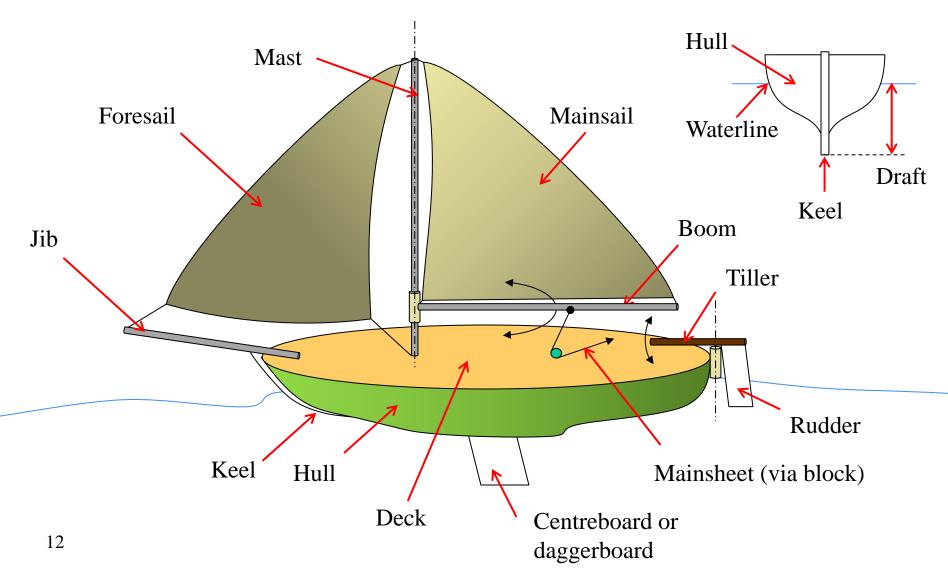
Assignments are to be submitted through the Faculty of EAIT (Hawken Building 50) assignment chute and require an **assignment cover sheet**, available from https://student.eait.uq.edu.au/coversheets/

Functional requirements

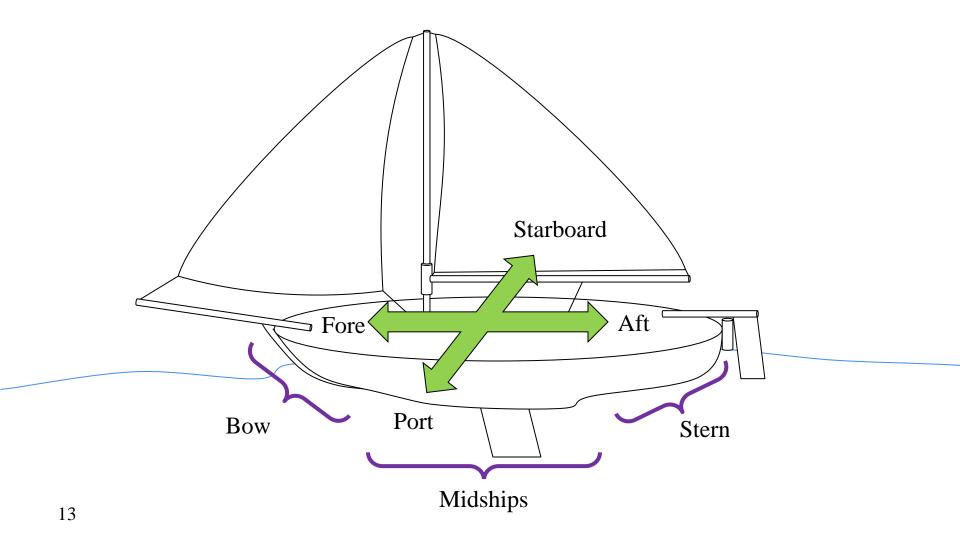
- Convince me you understand:
 - The problem
 - Its scope
 - Its requirements (and constraints)
- Describe:
 - The aspects you are working on
 - Key challenges of your subtasks (with analysis)
 - Your proposed approach
 - How it relates to the approach of your team

Marking rubric

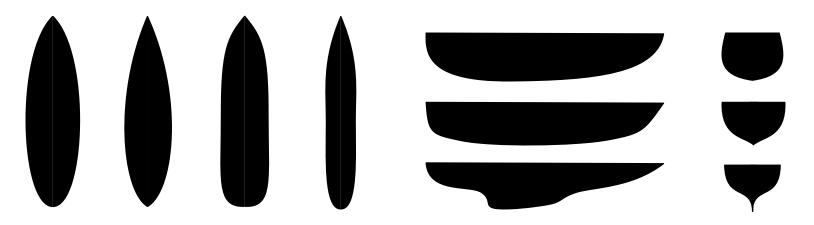
Design Brief -	Individual Mark Sheet.		ENGG/METR	2	Team number:			
Grade Band Task description (20)			Problem Analysis (30)	Methodology (30)		Design Integration (20)		
Excellent (85-100%)	Clearly describes the student's part of the project – its scope and responsibilities. Tasks constitute a valuable, well-motivated and substantive contribution to developing a solution.	20	Problem broken down systematically. The technical challenges are highlighted and it is obvious how the design problems map to tasks. Well- considered specification provided.	30 27	A well justified, comprehensive breakdown of the approach to be taken. Tasks with resources and duration have been logically	30 27	Captures the most important design decisions and shows how the individual task integrates with the rest of the team. Part of a well- functioning design strategy.	
Very Good (75-85%)	Sets out the work to be done, with some indication of scope or obligations. The student has an assigned task to undertake that will help the group.	16	Key challenges are recognised and described. Dependencies and prerequisites of major technical problems are discussed. A useful attempt at a specification is made.	24	ordered and associated with logical milestones. Potential risks are reported where appropriate, with associated mitigation strategies.	24		
Good (65-75%)	Broadly defined task description that maps to a major area of the project, but it less detailed about what is entailed or why that role was assigned.	14	Statement of the problem captures the essential challenges, and considers some interdependencies. Some analysis considered why these are challenging. Some performance specs.	21	A somewhat justified list of tasks with resources and duration has been ordered and assigned, with milestones. Risks are considered. Obvious thought has gone into assembling a solution plan.	21	Individual components are shown to work as part of a whole, with an indication of the interfaces between functional areas. Obvious communication in developing the solutions.	14
Satisfactory (50-65%)	Usable task and responsibility assignment provided. Unclear on boundaries or motivations.	12 10	Provides statement of what parts are difficult, without delving deeper into why. Little indication of thoughtful analysis. Expected performance requirements are minimal or missing.	18 15	A weakly justified list of tasks with resources and duration have been ordered and assigned, with illogical milestones. Some sense that thought was given the solution.	18 15	Functional breakdown across the project is awkward but each subsystem integrated usefully.	12
Poor (25-50%)	Some attempt made to provide task assignment and scope.	8	Simple restatement of the project challenges – limited insight into what makes the problem difficult.	12 9 6	An unjustified list of tasks with resources and duration has been ordered improperly. Denies apparent analytical consideration.	12 9 6	Collective design is haphazard and interfaces are nonexistant or illogical. Left hand has yet to meet right hand.	8
Very Poor (0-25%)	No attempt made at task scope	4 2 0	No attempt made at analysis	0	No attempt made at methodology	0	No attempt at integration	0
Group mark c	omponent: /100		Comments:					
Penalties /Bo	nuses:							
Final mark:	/100		Marker's Signature:	Date:	Date:			

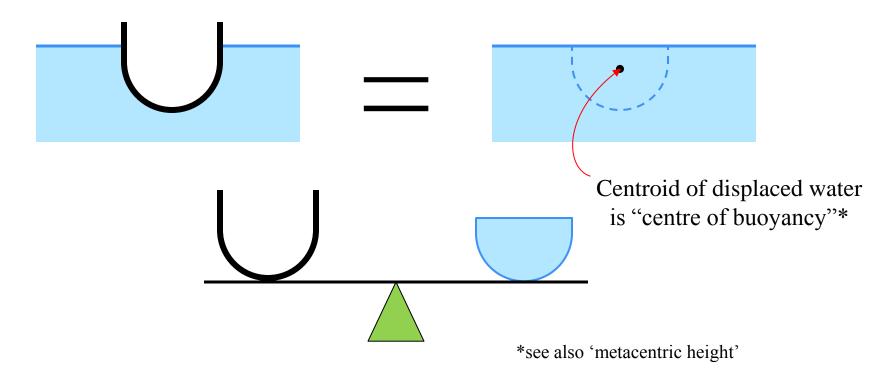

Aaarrrr.

On to the sailing!

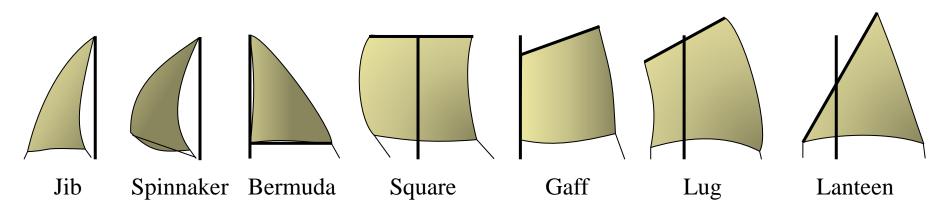

Sailing – what is it?

- The process of using the wind to propel a floating vessel by way of a foil called a sail
 - Force interaction of two discrete fluid dynamics systems gives rise to controllable propulsion
- Sailing requires no fossil fuels
- Sailing has unlimited range
- Sailing produces no carbon emissions
- Sailing is also very fun!




Hulls

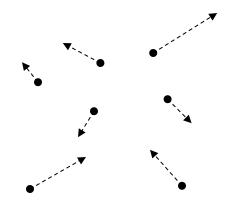
- Hydrodynamic shapes
 - Provide volume to carry passengers and cargo
 - Push through the water cleanly
 - Provide pitch and roll stability
 - Provide buoyancy

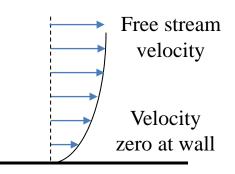

Buoyancy

- Principle of displacement:
 - A body floats in the water at a depth that exactly displaces its mass in water

Sails

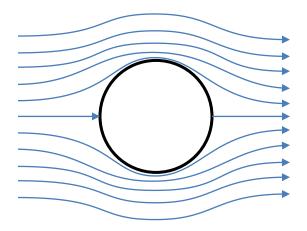
- A sail is fabric given shape by the wind that generates force from dynamic air pressure
- Sails come in many forms that each work slightly differently to produce propulsion


But first...


A quick detour into fluid mechanics

Some thoughts about fluids

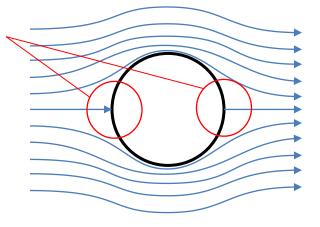
- Unsurprisingly, air and water are both fluids
 Fluids are composed of many tiny particles
- Common false assumptions:
 - Fluids are incompressible
 - Fluids are inviscid
 - Fluids have negligible mass



Boundary conditions

• Consider a shape in an on-coming flow:

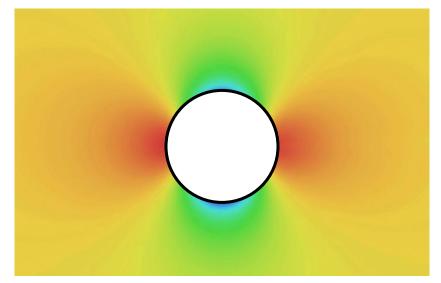
– The flow adheres to the surface of the shape



Blue lines are streamlines; locally tangent to velocity field

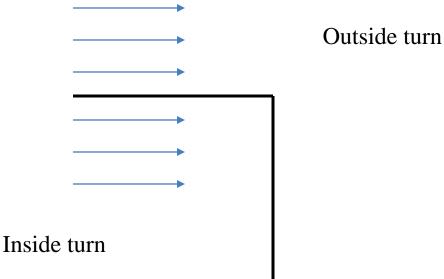
Boundary conditions

- Consider a shape in an on-coming flow:
 - The flow adheres to the surface of the shape

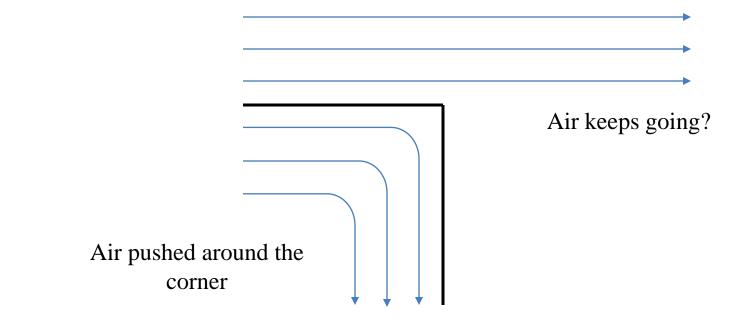

Stagnation points

Blue lines are streamlines; locally tangent to velocity field

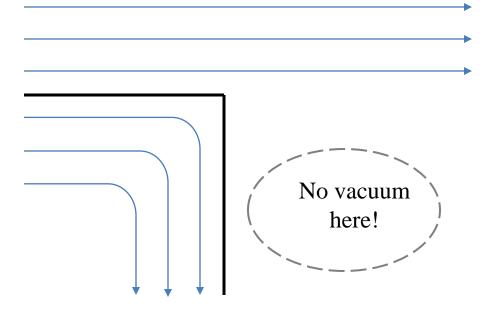
Boundary conditions


• Pressure increases where flow 'bunches up', Decreases where flow 'spreads out'

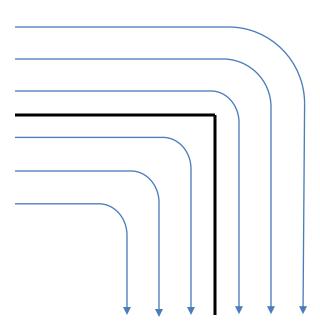
Colours represent pressure field Red = high pressure, green = low pressure


Some intuition

• Consider fluid encountering a corner

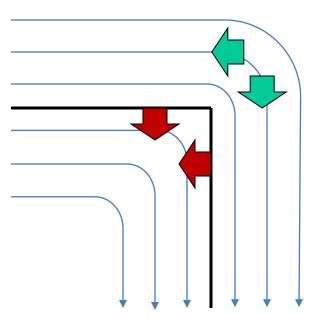

Some intuition

• The fluid must follow the surface contour, to satisfy the boundary condition


Some intuition

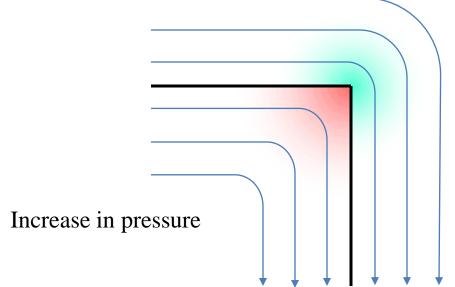
• The fluid must follow the surface contour, to satisfy the boundary condition

An intuitive idea

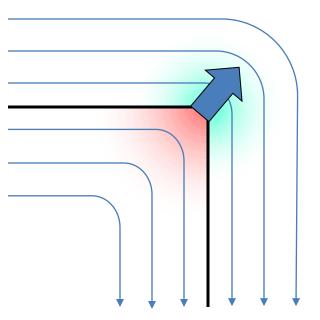

• The fluid must follow the surface contour, to satisfy the boundary condition

∴ at least some fluid must turn the corner

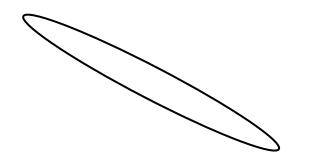
Some intuition


• Some force must act to decelerate the fluid horizontally and accelerate it vertically

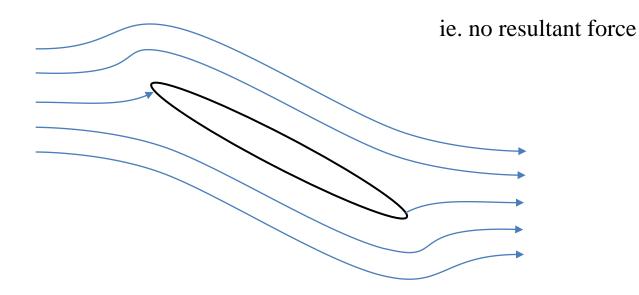
An intuitive idea


• This takes the form of increased pressure inside the corner and decreased pressure outside (suction)

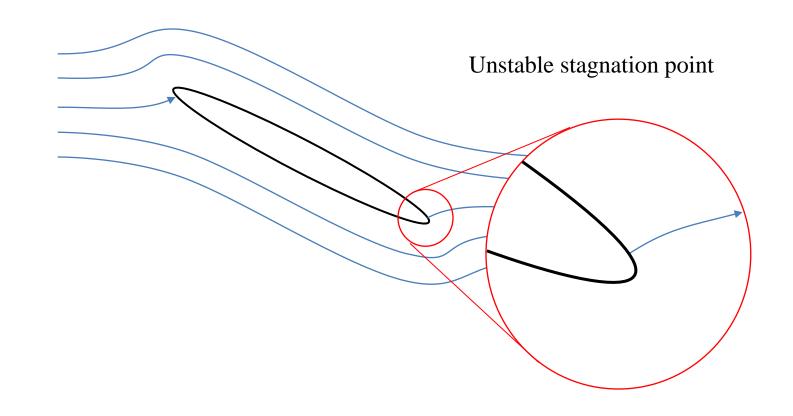
Decrease in pressure



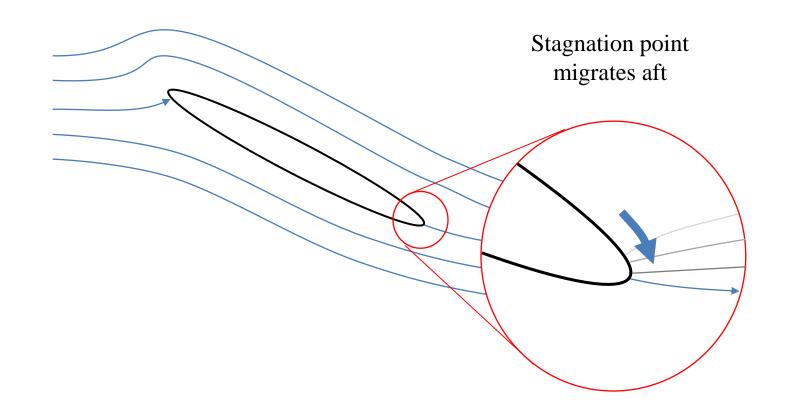
An intuitive idea


- A corresponding force acts on the corner
 - Ie. Newton's third law

• Now consider a symmetric body in a flow

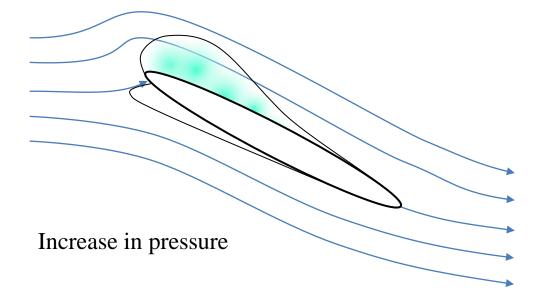


• It would be reasonable to expect the flow pattern to be symmetric

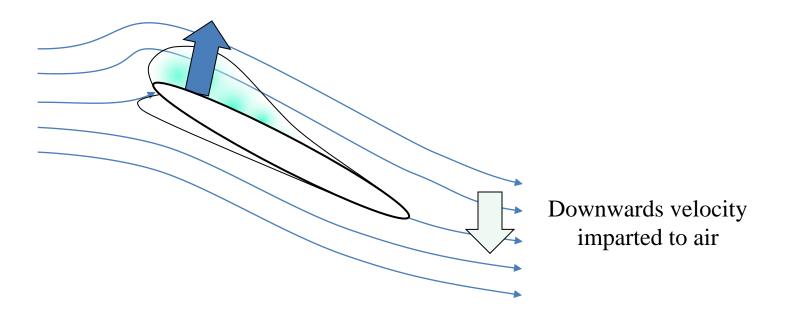


This is true only in the (aphysical) inviscid flow case

• In reality, viscosity in the flow removes energy along the boundary layer



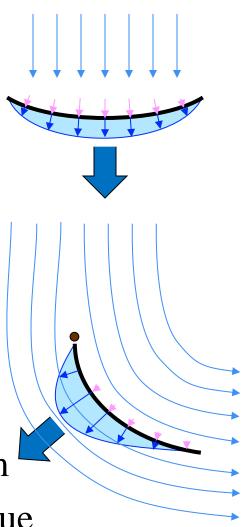
• The rear stagnation point shifts to the trailing edge (the Kutta condition)


• This is the basic idea behind wing lift

Decrease in pressure

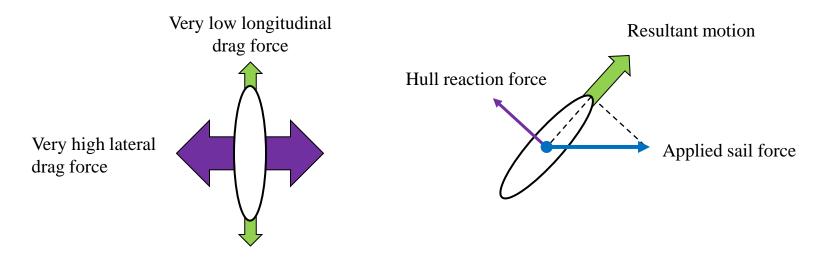
• This is the basic idea behind wing lift

Lift

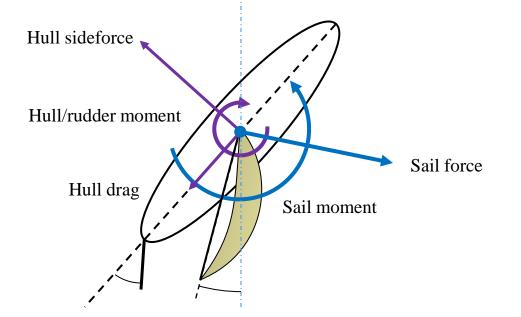

Note: You may also hear reference to "airfoil circulation", "vortex theory," "potential flows", and element or momentum methods. All are valid ways of describing the mechanics of wings

Right...

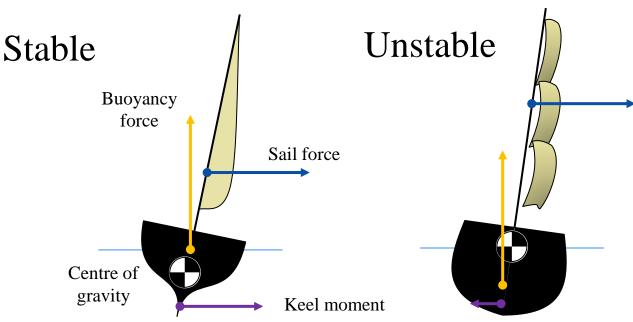
Back to sailing


How sails work

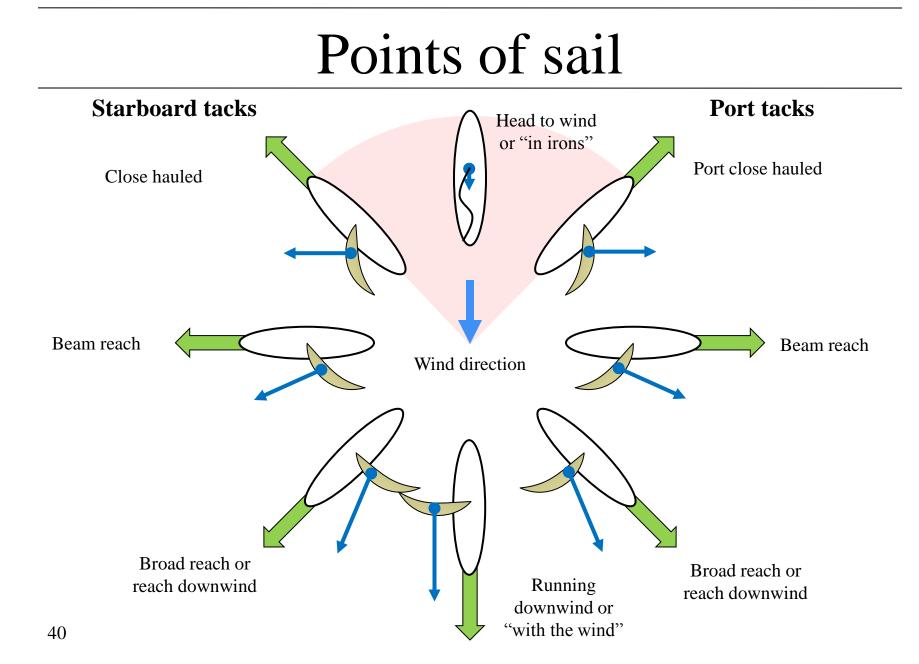
- Two main approaches:
- Parachute
 - Uses drag to drive downwind
 - Force proportional to sail area
- Wind-inflated ram-air parafoil
 - Curvature of air over the airfoil generates lift
 - Sail force acts some distance from
 the mast; resultant windward torque


How hulls work

- Streamlined hulls create a preferential lowdrag direction of travel
 - Can be thought of as an 'inclined plane' for changing direction of motion given force

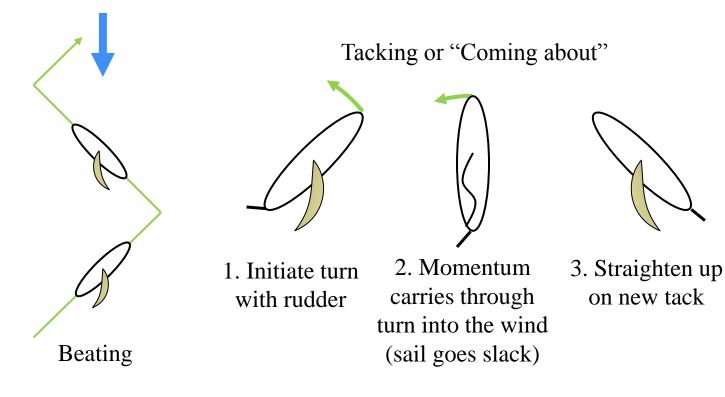

Sailing trim

- When on course and forces/torques balance, the vessel is said to be "in trim"
 - Trim sail force by changing sail angle of attack
 - Trim rudder moment by turning the tiller

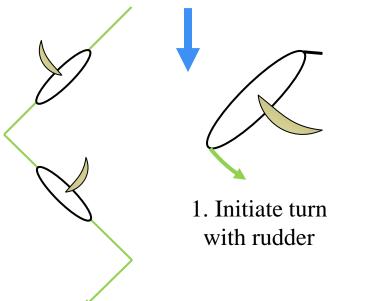


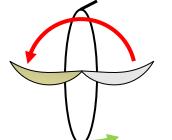
Lateral moment balance

- Sail force is applied above the hull CoG
 - High sail forces can tip poorly designed vessels


Low sail centre of pressure Centre of buoyancy above CoG Deep keel with fin or centreboard High sail centre of pressure CoG above centre of buoyancy Shallow keel, no centreboard

41


Beating


- Obviously a vessel cannot sail into the wind
 - Alternating port and starboard close hauled tacks allows cumulative upwind travel

Gybing

- Gybing (or "jibing") is changing tack from port to starboard (or vice versa) downwind
 - This can be a dangerous manoeuver if performed without planning and preparation!

2. Boom swings

across rapidly –

everyone ducks!

3. Straighten up on new tack

Useful equations

• The lift, drag and pitching moment of an convex body in laminar flow is given by:

where , and are non-dimensionalised lift, drag and moment coefficients dependent on body geometry*, and is the density of air, is the wing area, and is wind velocity

*Data for airfoils can be found published online or found by experiment or CFD

Questions?

Abaft the beam	Bitter end	Bumboat	Coxswain	Falkusa	Growler	Lanteen	Oilskines	Reeve	Sloop	Topgallant
Abeam	Block	Bunting tosser	Crance	Fantail	Gunwale	Launch	Orlop deck	Rigging	Slop chest	Trailboard
Aground	Blue Peter	Buntline	Crosstrees	Fardage	Gybe	Lay	Outhaul	Rigol	Slush	Tamp trade
Alee	Boatswain	Buoy	Cuddy	Fathom	Halyard	Lazaret	Overbear	Rip rap	Smack	Transom
Aloft	Bobstay	Burgee	Cunningham	Felucca	Harbour	League	Overhaul	Rode	Sounding	Trice
Amidships	Bollard	Caboose	Cunt splice	Fid	Hardtack	Leeboard	Panting	Romper	Spanker-mast	Trim
Archboard	Bonnet	Capsize	Cutter	Fife rail	Hawsepiper	Leeward	Parley	Rowlock	Spinnaker	Trimaran
Astarboard	Boom	Capstan	Daggarboard	Flank	Head	Line astern	Parbuckle	Rummage sale	Spotting top	Tumblehome
Athwartships	Boom gallows	Caravel	Davit	Flotsam	Heave	List	Parrel	Sagging	Splice	Turnbuckle
Avast	Boom vang	Careen	Davy Jones' Locker		Helm	Lofting	Pinnace	Sampan	Spreader	Turtling
Aweigh	Boomkin	Carrack	Dayblink	Forecastle	Hitch	Loggerhead	Pintle	Scantlings	Squat effect	Туе
Backstays	Bosun	Carvel	Deadeye	Forestays	Holystone	Lubber's hole	Pitchpole	Schooner	Stanchion	Underway
Baggywrinkle	Bottlescrew	Cat	Deadrise	Founder	Hulk	Luffing	Pontoon	Scow	Starboard	Unship
Bailer	Bottomry	Catamaran	Decks	Freeboard	Inglefield clip	Lumberhooker	Poop deck	Scud	Staysail	Upbound
Ballast	Bow	Cathead	Derrick	Funnel	Ironclad	Lugsail	Pooped	Sudding	Steerage	Vang
Barbette	Bower	Catpaws	Devil seam	Furl	Jacklines	Mae West	Port	Scull	Steeve	Wake
Barca-longa	Bowse	Centreboard	Dhow	Futtocks	Jib	Mainsheet	Porthole	Scuppers	Stern	Waft
Barkentine	Bowsprit	Chafing	Dinghy	Gaff	Jibboom	Marconi rig	Press gang	Seaboots	Stopper knot	Wash
Barrelman	Brace abox	Chine	Displacement	Galleass	Jetty	Marlinspike	Privateer	Seacock	Strake	Waterline
Batten	Brail	Chock	Disrate	Galleon	Jetsam	Masthead	Prow	Sextant	Studding-sails	Weatherly
Beaching	Brass monkey	Cleat	Dodger	Gam	Jigger-mast	Matelot	Puddening	Shanghaied	Swigging	Weigh anchor
Beam	Breakwater	Clew	Dogwatch	Gangway	Joggle	Mess	Purser	Sheer	Tack	Whelkie
Becalm	Bridge	Clinkerbuilt	Dory	Garbling	Kedge	Midships	Quarterdeck	Sheet	Tacking	Wherry
Belay	Brig	Coaming	Dreadnought	Gash	Keel	Mizzenmast	Quayside	Shift tides	Taffrail	Whiskerstays
Belaying pin	Brigantine	Cockpit	Drifter	Gennaker	Keelhaul	Mole	Rabbet	Shoal	Tailshaft	Whipstaff
Berth	Brightwork	Collier	Drogue	Genoa	Ketch	Monkey's fist	Ram	Short stay	Thole	Windage
Bilander	Broach	Companionway	Dunnage	Gig	Knighthead	Moor	Ratlines	Shrouds	Thwart	Worm
Bilge	Broadside	Conn	Embayed	Gooseneck	Knot	Nipper	Razee	Sidewheel	Timoneer	Yacht
Bimini top	Brow	Convoy	Ensign	Grapeshot	Lagan	Nun	Reaching	Skiff	Tingle	Yardarm
Bimmy	Buffer	Counterflood	Eyesplice	Graving dock	Lanyard	Oakum	Reduced cat	Skipper	Tiller	Yarr
D'4	Bulkhead	Cowl	Fairlead	Gripe	Lanboard	Offing	Reef-points	Skyscraper	Tompion	Yawl
^{Bitts} 44	Duikiiduu			Shipe		0	r r	J	·r	

Tune-in next time for...

Sensor Fusion and Filtering

Or

"Making sensors make sense"

Fun fact: The poop deck is not what you think it is.